001     835989
005     20240711113519.0
024 7 _ |a 10.1016/j.fusengdes.2017.05.037
|2 doi
024 7 _ |a 0920-3796
|2 ISSN
024 7 _ |a 1873-7196
|2 ISSN
024 7 _ |a WOS:000419411900051
|2 WOS
037 _ _ |a FZJ-2017-05114
082 _ _ |a 620
100 1 _ |a Drenik, Aleksander
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Detection of ammonia by residual gas analysis in AUG and JET
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510063219_4904
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nitrogen seeding, necessary for divertor heat-load mitigation in ITER, has been shown to lead to ammonia formation which would be a severe operational and safety issue in ITER. Predictions of ammonia production in ITER are based on data from present day fusion devices. Ammonia is mainly detected by residual gas analysis (RGA). Detection of ammonia is impeded by the presence of water and methane which, in a mixed H-D system, leave signatures in the same range of the mass spectra. A statistical model is used to ascribe an average isotope ratio to each gaseous species. The model is tested with simulated RGA recordings with varying concentration of ammonia to evaluate the sensitivity to fitting parameter boundaries, noise in the recordings and mis-matching cracking patterns. The analysis shows that the fitting procedure may in some occasions substitute species among each other, resulting in faulty concentrations. Nevertheless, the right choice of parameter boundaries ensures correct fitting results. Finally, the fitting procedure is applied to experimental data from nitrogen-seeeded discharges at AUG and JET.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Alegre, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 2
700 1 _ |a Castro, Alfonso de
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kruezi, Uron
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Meisl, Gerd
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mozetic, Miran
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Oberkofler, Martin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Panjan, Matjaz
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Primc, Gregor
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Resnik, Matic
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Rohde, Volker
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Seibt, Michael
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Tabarés, Francisco L.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Zaplotnik, Rok
|0 P:(DE-HGF)0
|b 14
773 _ _ |a 10.1016/j.fusengdes.2017.05.037
|g p. S0920379617305811
|0 PERI:(DE-600)1492280-0
|p 239-243
|t Fusion engineering and design
|v 124
|y 2017
|x 0920-3796
856 4 _ |u https://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:835989
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129976
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUSION ENG DES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21