001     835999
005     20240711113519.0
024 7 _ |a 10.1016/j.nme.2017.05.005
|2 doi
024 7 _ |a 2128/15705
|2 Handle
024 7 _ |a WOS:000417293300104
|2 WOS
037 _ _ |a FZJ-2017-05124
082 _ _ |a 333.7
100 1 _ |a Martynova, Y.
|0 P:(DE-Juel1)167463
|b 0
|e Corresponding author
245 _ _ |a Deuterium retention in RAFM steels after high fluence plasma expo
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1509027336_28194
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Deuterium retention and detrapping behavior in the ferritic-martensitic steels EUROFER’97 and P92 after exposure to plasma at high fluences ≥ 1026 D/m2 was studied using thermal desorption spectroscopy (TDS), supported by nuclear reaction analysis. Low-temperature irradiation at 450 K and fluences ≥ 1026 D/m2 with low impact energy D+ / D++He+ ions of 40 eV at PSI-2 resulted in a deuterium inventory of 7–18 × 1019 D/m2 predominantly at depths ≥8.6 µm. Helium admixture led to a reduction of total D retention in both steels, irrespective of surface erosion and composition. The deuterium spectra of both steels displayed one D2 desorption peak at ∼ 540–570 K and HD maxima at 540–590, 700–730 and 900–930 K. It is suggested that deuterium is mostly retained in the bulk of steel material on interfaces of carbide precipitates and on grain boundaries.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Möller, S.
|0 P:(DE-Juel1)139534
|b 1
700 1 _ |a Rasiński, M.
|0 P:(DE-Juel1)162160
|b 2
700 1 _ |a Matveev, D.
|0 P:(DE-Juel1)8998
|b 3
700 1 _ |a Freisinger, M.
|0 P:(DE-Juel1)130010
|b 4
700 1 _ |a Kiss, K.
|0 P:(DE-Juel1)142531
|b 5
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 6
700 1 _ |a Unterberg, B.
|0 P:(DE-Juel1)6784
|b 7
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 8
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 9
|u fzj
773 _ _ |a 10.1016/j.nme.2017.05.005
|g p. S2352179116302812
|0 PERI:(DE-600)2808888-8
|p 648-654
|t Nuclear materials and energy
|v 12
|y 2017
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/835999/files/1-s2.0-S2352179116302812-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/835999/files/1-s2.0-S2352179116302812-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/835999/files/1-s2.0-S2352179116302812-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/835999/files/1-s2.0-S2352179116302812-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/835999/files/1-s2.0-S2352179116302812-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/835999/files/1-s2.0-S2352179116302812-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:835999
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167463
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)139534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)8998
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130010
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)142531
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)6784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21