001     836003
005     20210129230846.0
024 7 _ |a 2128/14967
|2 Handle
037 _ _ |a FZJ-2017-05128
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Miura, Kohtaroh
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 34th International Symposium on Lattice Field Theory
|c Southampton
|d 2016-07-24 - 2016-07-30
|w UK
245 _ _ |a Moments of the quark electromagnetic-current two-point function at the physical point: connected contributions
260 _ _ |a Trieste
|c 2017
|b SISSA
300 _ _ |a 6 p.
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1501145160_26322
|2 PUB:(DE-HGF)
520 _ _ |a The low, euclidean momentum behavior of the hadron vacuum polarization (HVP) is critical for determining, amongst other quantities, the anomalous magnetic moments of the muon. Here we present lattice QCD results for the first two derivatives of the HVP function at vanishing virtuality [1]. Computations are performed with 2 + 1 + 1 flavors of staggered quarks around the physical mass point, in volumes of linear extent larger than 6 fm, and at six values of the lattice spacing, allowing for a fully controlled continuum extrapolation. We further consider possible uncertainties which stem from finite-volume and isospin-breaking effects. After adding to our connected contributions the disconnected terms presented in [2], we compare the resulting derivatives of the full HVP with phenomenological estimates.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to INSPIRE
650 _ 7 |a muon: magnetic moment
|2 INSPIRE
650 _ 7 |a vacuum polarization: hadronic: calculated
|2 INSPIRE
650 _ 7 |a quantum chromodynamics
|2 INSPIRE
650 _ 7 |a lattice field theory
|2 INSPIRE
650 _ 7 |a numerical calculations
|2 INSPIRE
650 _ 7 |a quark: staggered
|2 INSPIRE
650 _ 7 |a quark: flavor: 4
|2 INSPIRE
650 _ 7 |a two-point function
|2 INSPIRE
650 _ 7 |a continuum limit
|2 INSPIRE
650 _ 7 |a finite size: effect
|2 INSPIRE
650 _ 7 |a isospin: symmetry breaking
|2 INSPIRE
650 _ 7 |a lattice
|2 INSPIRE
650 _ 7 |a hadron
|2 INSPIRE
650 _ 7 |a CPT
|2 INSPIRE
700 1 _ |a Borsanyi, Szabolcs
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fodor, Zoltan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kawanai, Taichi
|0 P:(DE-Juel1)165658
|b 3
700 1 _ |a Krieg, Stefan
|0 P:(DE-Juel1)132171
|b 4
700 1 _ |a Lellouch, Laurent
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Malak, Rehan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Szabo, Kalman
|0 P:(DE-Juel1)161563
|b 7
700 1 _ |a Torrero, Christian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Thot, B. C.
|0 P:(DE-HGF)0
|b 9
773 _ _ |0 PERI:(DE-600)2642026-0
|p 174
|t Proceedings of Science
|v LATTICE2016
|y 2017
|x 1824-8039
856 4 _ |u https://juser.fz-juelich.de/record/836003/files/LATTICE2016_174.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:836003
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165658
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132171
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161563
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21