000836006 001__ 836006
000836006 005__ 20240711113521.0
000836006 0247_ $$2doi$$a10.1088/1361-6587/aa7360
000836006 0247_ $$2ISSN$$a0032-1028
000836006 0247_ $$2ISSN$$a0368-3281
000836006 0247_ $$2ISSN$$a0741-3335
000836006 0247_ $$2ISSN$$a1361-6587
000836006 0247_ $$2ISSN$$a1879-2979
000836006 0247_ $$2WOS$$aWOS:000403836300002
000836006 0247_ $$2altmetric$$aaltmetric:20823478
000836006 037__ $$aFZJ-2017-05131
000836006 041__ $$aEnglish
000836006 082__ $$a530
000836006 1001_ $$0P:(DE-HGF)0$$aCai, J. Q.$$b0$$eCorresponding author
000836006 245__ $$aThe comparison between modeling of edge localized modes with a current relaxation model and experiment on EAST
000836006 260__ $$aBristol$$bIOP Publ.$$c2017
000836006 3367_ $$2DRIVER$$aarticle
000836006 3367_ $$2DataCite$$aOutput Types/Journal article
000836006 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501157450_14805
000836006 3367_ $$2BibTeX$$aARTICLE
000836006 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836006 3367_ $$00$$2EndNote$$aJournal Article
000836006 520__ $$aThe distinctions of edge localized mode (ELM) frequency distributions between moderate and high edge current density cases were observed on the experiment advanced superconducting tokamak. In this paper, a current relaxation model is applied to explain this new observation. It has been demonstrated that the ELM frequency is very sensitive to the edge current density and the edge safety factor by the model predictions. The results also show that, in the large edge current density case, the ELM frequency is subject to a single-peak distribution; while in the moderate edge current density case, the ELM frequency is subject to a roughly multi-peak distribution.
000836006 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000836006 588__ $$aDataset connected to CrossRef
000836006 7001_ $$0P:(DE-Juel1)142550$$aPearson, J.$$b1
000836006 7001_ $$0P:(DE-HGF)0$$aZang, Q.$$b2
000836006 7001_ $$0P:(DE-HGF)0$$aWu, M. Q.$$b3
000836006 7001_ $$0P:(DE-HGF)0$$aHuang, J.$$b4
000836006 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b5$$ufzj
000836006 7001_ $$0P:(DE-HGF)0$$aZhang, T.$$b6
000836006 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/1361-6587/aa7360$$gVol. 59, no. 8, p. 085010 -$$n8$$p085010 $$tPlasma physics and controlled fusion$$v59$$x1361-6587$$y2017
000836006 8564_ $$uhttps://juser.fz-juelich.de/record/836006/files/Cai_2017_Plasma_Phys._Control._Fusion_59_085010.pdf$$yRestricted
000836006 909CO $$ooai:juser.fz-juelich.de:836006$$pVDB
000836006 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b5$$kFZJ
000836006 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000836006 9141_ $$y2017
000836006 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836006 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000836006 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836006 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA PHYS CONTR F : 2015
000836006 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836006 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836006 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836006 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836006 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836006 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836006 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836006 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836006 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000836006 980__ $$ajournal
000836006 980__ $$aVDB
000836006 980__ $$aI:(DE-Juel1)IEK-4-20101013
000836006 980__ $$aUNRESTRICTED
000836006 981__ $$aI:(DE-Juel1)IFN-1-20101013