001     836011
005     20240711113521.0
024 7 _ |a 10.1016/j.fusengdes.2017.03.072
|2 doi
024 7 _ |a 0920-3796
|2 ISSN
024 7 _ |a 1873-7196
|2 ISSN
024 7 _ |a 2128/15784
|2 Handle
024 7 _ |a WOS:000419411900039
|2 WOS
024 7 _ |a altmetric:28595998
|2 altmetric
037 _ _ |a FZJ-2017-05136
082 _ _ |a 620
100 1 _ |a Wegener, Tobias
|0 P:(DE-Juel1)161367
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Development and analyses of self-passivating tungsten alloys for DEMO accidental conditions
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510063389_4910
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tungsten is considered the main candidate material for the first-wall in DEMO due to its high melting point, low erosion yield and low tritium retention. Nevertheless, it can cause a substantial safety issue in a loss-of-coolant accident (LOCA) in combination with air ingress into the plasma vessel, due to the formation and sublimation of volatile neutron activated tungsten oxide. Self-passivating tungsten alloys introduce a passive safety mechanism by forming a stable chromic oxide scale on the surface acting as a diffusion barrier for oxygen and preventing the formation of tungsten oxide. Self-passivating tungsten alloys optimized for oxidation resistance containing ∼12 wt.% Cr and ∼0.6 wt.% Y are investigated under conditions of argon–oxygen, humid argon and humid air atmospheres at different partial pressures and temperatures ranging from 1073 to 1273 K. Thin films with ∼3.5 μm thickness produced by magnetron sputter deposition are used as a model system. The oxidation resistance of these films in an argon–20 vol.% oxygen atmosphere is sufficient to prevent formation and release of tungsten oxide at temperatures of from 1073 to 1273 K. The sublimation of Cr in nitrogen–oxygen–water atmosphere at T ≥ 1273 K is discussed. A deeper understanding of the governing processes for oxygen/Cr diffusion under different atmospheres is gained, supported by SEM/EDX in combination with FIB cross-section and TGA measurements.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Klein, Felix
|0 P:(DE-Juel1)166427
|b 1
|u fzj
700 1 _ |a Litnovsky, Andrey
|0 P:(DE-Juel1)130090
|b 2
|u fzj
700 1 _ |a Rasinski, Marcin
|0 P:(DE-Juel1)162160
|b 3
|u fzj
700 1 _ |a Brinkmann, Jens
|0 P:(DE-Juel1)164284
|b 4
700 1 _ |a Koch, Freimut
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 6
|u fzj
773 _ _ |a 10.1016/j.fusengdes.2017.03.072
|g p. S092037961730296X
|0 PERI:(DE-600)1492280-0
|p 183-186
|t Fusion engineering and design
|v 124
|y 2017
|x 0920-3796
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/836011/files/1-s2.0-S092037961730296X-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/836011/files/1-s2.0-S092037961730296X-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/836011/files/1-s2.0-S092037961730296X-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/836011/files/1-s2.0-S092037961730296X-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/836011/files/1-s2.0-S092037961730296X-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/836011/files/1-s2.0-S092037961730296X-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:836011
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161367
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUSION ENG DES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21