000836032 001__ 836032
000836032 005__ 20210129230852.0
000836032 0247_ $$2Handle$$a2128/14958
000836032 037__ $$aFZJ-2017-05157
000836032 041__ $$aEnglish
000836032 082__ $$a530
000836032 1001_ $$0P:(DE-HGF)0$$aChambers, A. J.$$b0$$eCorresponding author
000836032 1112_ $$a34th annual International Symposium on Lattice Field Theory$$cSouthampton$$d2016-07-24 - 2016-07-30$$gLATTICE2016$$wUK
000836032 245__ $$aHadron Structure from the Feynman–Hellmann Theorem
000836032 260__ $$aTrieste$$bSISSA$$c2017
000836032 300__ $$a6 p.
000836032 3367_ $$2ORCID$$aCONFERENCE_PAPER
000836032 3367_ $$033$$2EndNote$$aConference Paper
000836032 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000836032 3367_ $$2BibTeX$$aINPROCEEDINGS
000836032 3367_ $$2DRIVER$$aconferenceObject
000836032 3367_ $$2DataCite$$aOutput Types/Conference Paper
000836032 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1500990596_25567
000836032 520__ $$aThe determination of hadronic form factors at large momentum transfers has been a challenging problem in lattice QCD simulations. Here we show how the Feynman–Hellmann method may be extended to non-forward matrix elements to calculate hadronic form factors in lattice QCD at much higher momenta than previously accessible. We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV2, with results for GE=GM in the proton agreeing well with experimental results.
000836032 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000836032 7001_ $$0P:(DE-HGF)0$$aDragos, J.$$b1
000836032 7001_ $$0P:(DE-HGF)0$$aHorsley, R.$$b2
000836032 7001_ $$0P:(DE-HGF)0$$aNakamura, Y.$$b3
000836032 7001_ $$0P:(DE-HGF)0$$aPerlt, H.$$b4
000836032 7001_ $$0P:(DE-Juel1)144441$$aPleiter, Dirk$$b5$$ufzj
000836032 7001_ $$0P:(DE-HGF)0$$aRakow, P. E. L.$$b6
000836032 7001_ $$0P:(DE-HGF)0$$aSchierholz, G.$$b7
000836032 7001_ $$0P:(DE-HGF)0$$aSchiller, A.$$b8
000836032 7001_ $$0P:(DE-HGF)0$$aSomfleth, K.$$b9
000836032 7001_ $$0P:(DE-HGF)0$$aStüben, H.$$b10
000836032 7001_ $$0P:(DE-HGF)0$$aYoung, R. D.$$b11
000836032 7001_ $$0P:(DE-HGF)0$$aZanotti, J. M.$$b12
000836032 773__ $$0PERI:(DE-600)2642026-0$$p168$$tProceedings of Science$$vLATTICE2016$$x1824-8039$$y2017
000836032 8564_ $$uhttps://pos.sissa.it/archive/conferences/256/168/LATTICE2016_168.pdf
000836032 8564_ $$uhttps://juser.fz-juelich.de/record/836032/files/LATTICE2016_168.pdf$$yOpenAccess
000836032 909CO $$ooai:juser.fz-juelich.de:836032$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000836032 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144441$$aForschungszentrum Jülich$$b5$$kFZJ
000836032 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000836032 9141_ $$y2017
000836032 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836032 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000836032 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000836032 980__ $$acontrib
000836032 980__ $$aVDB
000836032 980__ $$aUNRESTRICTED
000836032 980__ $$ajournal
000836032 980__ $$aI:(DE-Juel1)JSC-20090406
000836032 9801_ $$aFullTexts