000836032 001__ 836032 000836032 005__ 20210129230852.0 000836032 0247_ $$2Handle$$a2128/14958 000836032 037__ $$aFZJ-2017-05157 000836032 041__ $$aEnglish 000836032 082__ $$a530 000836032 1001_ $$0P:(DE-HGF)0$$aChambers, A. J.$$b0$$eCorresponding author 000836032 1112_ $$a34th annual International Symposium on Lattice Field Theory$$cSouthampton$$d2016-07-24 - 2016-07-30$$gLATTICE2016$$wUK 000836032 245__ $$aHadron Structure from the Feynman–Hellmann Theorem 000836032 260__ $$aTrieste$$bSISSA$$c2017 000836032 300__ $$a6 p. 000836032 3367_ $$2ORCID$$aCONFERENCE_PAPER 000836032 3367_ $$033$$2EndNote$$aConference Paper 000836032 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal 000836032 3367_ $$2BibTeX$$aINPROCEEDINGS 000836032 3367_ $$2DRIVER$$aconferenceObject 000836032 3367_ $$2DataCite$$aOutput Types/Conference Paper 000836032 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1500990596_25567 000836032 520__ $$aThe determination of hadronic form factors at large momentum transfers has been a challenging problem in lattice QCD simulations. Here we show how the Feynman–Hellmann method may be extended to non-forward matrix elements to calculate hadronic form factors in lattice QCD at much higher momenta than previously accessible. We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV2, with results for GE=GM in the proton agreeing well with experimental results. 000836032 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000836032 7001_ $$0P:(DE-HGF)0$$aDragos, J.$$b1 000836032 7001_ $$0P:(DE-HGF)0$$aHorsley, R.$$b2 000836032 7001_ $$0P:(DE-HGF)0$$aNakamura, Y.$$b3 000836032 7001_ $$0P:(DE-HGF)0$$aPerlt, H.$$b4 000836032 7001_ $$0P:(DE-Juel1)144441$$aPleiter, Dirk$$b5$$ufzj 000836032 7001_ $$0P:(DE-HGF)0$$aRakow, P. E. L.$$b6 000836032 7001_ $$0P:(DE-HGF)0$$aSchierholz, G.$$b7 000836032 7001_ $$0P:(DE-HGF)0$$aSchiller, A.$$b8 000836032 7001_ $$0P:(DE-HGF)0$$aSomfleth, K.$$b9 000836032 7001_ $$0P:(DE-HGF)0$$aStüben, H.$$b10 000836032 7001_ $$0P:(DE-HGF)0$$aYoung, R. D.$$b11 000836032 7001_ $$0P:(DE-HGF)0$$aZanotti, J. M.$$b12 000836032 773__ $$0PERI:(DE-600)2642026-0$$p168$$tProceedings of Science$$vLATTICE2016$$x1824-8039$$y2017 000836032 8564_ $$uhttps://pos.sissa.it/archive/conferences/256/168/LATTICE2016_168.pdf 000836032 8564_ $$uhttps://juser.fz-juelich.de/record/836032/files/LATTICE2016_168.pdf$$yOpenAccess 000836032 909CO $$ooai:juser.fz-juelich.de:836032$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000836032 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144441$$aForschungszentrum Jülich$$b5$$kFZJ 000836032 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000836032 9141_ $$y2017 000836032 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000836032 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000836032 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000836032 980__ $$acontrib 000836032 980__ $$aVDB 000836032 980__ $$aUNRESTRICTED 000836032 980__ $$ajournal 000836032 980__ $$aI:(DE-Juel1)JSC-20090406 000836032 9801_ $$aFullTexts