000836040 001__ 836040
000836040 005__ 20240711113523.0
000836040 0247_ $$2doi$$a10.1016/j.jnucmat.2013.02.043
000836040 0247_ $$2ISSN$$a0022-3115
000836040 0247_ $$2ISSN$$a1873-4820
000836040 0247_ $$2WOS$$aWOS:000319172200044
000836040 037__ $$aFZJ-2017-05165
000836040 082__ $$a530
000836040 1001_ $$0P:(DE-Juel1)166383$$aYuan, Y.$$b0
000836040 245__ $$aSurface modification of molten W exposed to high heat flux helium neutral beams
000836040 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2013
000836040 3367_ $$2DRIVER$$aarticle
000836040 3367_ $$2DataCite$$aOutput Types/Journal article
000836040 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501596787_13620
000836040 3367_ $$2BibTeX$$aARTICLE
000836040 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836040 3367_ $$00$$2EndNote$$aJournal Article
000836040 520__ $$aHigh heat flux tests with central heat flux of 10.5 MW/m2 using helium neutral beams have been carried out on rolled tungsten. The energy of helium particles is 33 keV and the particle flux is 2 × 1021 m−2 s−1. An 80 × 65 × 3 mm3 rolled tungsten plate is firstly exposed to a 4.6 s pulse resulting in partially molten surfaces. Thereafter the tungsten plate is irradiated by several helium pulses with fluences of 1.2–2.5 × 1022/m2 and peak temperatures from 1450 to 2590 °C. The experiments show that: (1) helium-induced surface modification of the resolidified tungsten surface is very different from that of the non-molten surface; (2) the surface morphology of molten surface is closely related to the orientation of the resolidified grain; (3) the evolution of surface modifications, for both of the molten and non-molten tungsten surfaces, indicates a strong dependence on the surface temperature and local helium fluence.
000836040 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000836040 588__ $$aDataset connected to CrossRef
000836040 7001_ $$0P:(DE-HGF)0$$aGreuner, H.$$b1
000836040 7001_ $$0P:(DE-HGF)0$$aBöswirth, B.$$b2
000836040 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b3$$eCorresponding author
000836040 7001_ $$0P:(DE-HGF)0$$aLuo, G.-N.$$b4
000836040 7001_ $$0P:(DE-HGF)0$$aFu, B. Q.$$b5
000836040 7001_ $$0P:(DE-HGF)0$$aXu, H. Y.$$b6
000836040 7001_ $$0P:(DE-HGF)0$$aShen, Z. J.$$b7
000836040 7001_ $$0P:(DE-HGF)0$$aLiu, W.$$b8$$eCorresponding author
000836040 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2013.02.043$$gVol. 437, no. 1-3, p. 297 - 302$$n1-3$$p297 - 302$$tJournal of nuclear materials$$v437$$x0022-3115$$y2013
000836040 8564_ $$uhttps://juser.fz-juelich.de/record/836040/files/1-s2.0-S0022311513004492-main.pdf$$yRestricted
000836040 8564_ $$uhttps://juser.fz-juelich.de/record/836040/files/1-s2.0-S0022311513004492-main.gif?subformat=icon$$xicon$$yRestricted
000836040 8564_ $$uhttps://juser.fz-juelich.de/record/836040/files/1-s2.0-S0022311513004492-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836040 8564_ $$uhttps://juser.fz-juelich.de/record/836040/files/1-s2.0-S0022311513004492-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836040 8564_ $$uhttps://juser.fz-juelich.de/record/836040/files/1-s2.0-S0022311513004492-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836040 8564_ $$uhttps://juser.fz-juelich.de/record/836040/files/1-s2.0-S0022311513004492-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836040 909CO $$ooai:juser.fz-juelich.de:836040$$pVDB
000836040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b3$$kFZJ
000836040 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000836040 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836040 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MATER : 2015
000836040 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836040 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836040 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836040 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836040 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836040 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836040 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836040 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836040 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000836040 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836040 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000836040 980__ $$ajournal
000836040 980__ $$aVDB
000836040 980__ $$aI:(DE-Juel1)IEK-4-20101013
000836040 980__ $$aUNRESTRICTED
000836040 981__ $$aI:(DE-Juel1)IFN-1-20101013