001     836047
005     20240711113524.0
024 7 _ |a 10.1088/0741-3335/59/1/014018
|2 doi
024 7 _ |a 0032-1028
|2 ISSN
024 7 _ |a 0368-3281
|2 ISSN
024 7 _ |a 0741-3335
|2 ISSN
024 7 _ |a 1361-6587
|2 ISSN
024 7 _ |a 1879-2979
|2 ISSN
024 7 _ |a 2128/15006
|2 Handle
024 7 _ |a WOS:000386799100001
|2 WOS
037 _ _ |a FZJ-2017-05172
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Klinger, T.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Performance and properties of the first plasmas of Wendelstein 7-X
260 _ _ |a Bristol
|c 2017
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501503753_31600
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The optimized, superconducting stellarator Wendelstein 7-X went into operation and delivered first measurement data after 15 years of construction and one year commissioning. Errors in the magnet assembly were confirmend to be small. Plasma operation was started with 5 MW electron cyclotron resonance heating (ECRH) power and five inboard limiters. Core plasma values of ${{T}_{\text{e}}}>8$ keV, ${{T}_{\text{i}}}>2$ keV at line-integrated densities $n\approx 3\centerdot {{10}^{19}}~{{\text{m}}^{-2}}$ were achieved, exceeding the original expectations by about a factor of two. Indications for a core-electron-root were found. The energy confinement times are in line with the international stellarator scaling, despite unfavourable wall conditions, i.e. large areas of metal surfaces and particle sources from the limiter close to the plasma volume. Well controlled shorter hydrogen discharges at higher power (4 MW ECRH power for 1 s) and longer discharges at lower power (0.7 MW ECRH power for 6 s) could be routinely established after proper wall conditioning. The fairly large set of diagnostic systems running in the end of the 10 weeks operation campaign provided first insights into expected and unexpected physics of optimized stellarators.
536 _ _ |a 171 - Stellarator Research (POF3-171)
|0 G:(DE-HGF)POF3-171
|c POF3-171
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Alonso, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bozhenkov, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Burhenn, R.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dinklage, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fuchert, G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Geiger, J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Grulke, O.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Langenberg, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hirsch, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kocsis, G.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Knauer, J.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Krämer-Flecken, A.
|0 P:(DE-Juel1)130075
|b 12
|u fzj
700 1 _ |a Laqua, H.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lazerson, S.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Landreman, M.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Maaßberg, H.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Marsen, S.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Otte, M.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Pablant, N.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Pasch, E.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Rahbarnia, K.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Stange, T.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Szepesi, T.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Thomsen, H.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Traverso, P.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Velasco, J. L.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Wauters, T.
|0 P:(DE-Juel1)145890
|b 27
|u fzj
700 1 _ |a Weir, G.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Windisch, T.
|0 P:(DE-HGF)0
|b 29
773 _ _ |a 10.1088/0741-3335/59/1/014018
|g Vol. 59, no. 1, p. 014018 -
|0 PERI:(DE-600)1473144-7
|n 1
|p 014018 -
|t Plasma physics and controlled fusion
|v 59
|y 2017
|x 1361-6587
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/836047/files/Klinger_2017_Plasma_Phys._Control._Fusion_59_014018.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/836047/files/Klinger_2017_Plasma_Phys._Control._Fusion_59_014018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:836047
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)130075
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 27
|6 P:(DE-Juel1)145890
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-171
|2 G:(DE-HGF)POF3-100
|v Stellarator Research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLASMA PHYS CONTR F : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21