000836055 001__ 836055
000836055 005__ 20210129230854.0
000836055 0247_ $$2doi$$a10.1016/j.scitotenv.2017.04.083
000836055 0247_ $$2ISSN$$a0048-9697
000836055 0247_ $$2ISSN$$a1879-1026
000836055 0247_ $$2WOS$$aWOS:000405252000007
000836055 0247_ $$2altmetric$$aaltmetric:19858807
000836055 0247_ $$2pmid$$apmid:28463701
000836055 037__ $$aFZJ-2017-05179
000836055 041__ $$aEnglish
000836055 082__ $$a333.7
000836055 1001_ $$0P:(DE-Juel1)165707$$aWei, Jing$$b0
000836055 245__ $$aInfluence of root components of celery on pyrene bioaccessibility, soil enzymes and microbial communities in pyrene and pyrene-diesel spiked soils
000836055 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000836055 3367_ $$2DRIVER$$aarticle
000836055 3367_ $$2DataCite$$aOutput Types/Journal article
000836055 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501160817_24026
000836055 3367_ $$2BibTeX$$aARTICLE
000836055 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836055 3367_ $$00$$2EndNote$$aJournal Article
000836055 520__ $$aThough phytoremediation is deemed as a promising approach to restore polycyclic aromatic hydrocarbon (PAHs) contaminated sites, studies about how the biodegradation of PAHs is enhanced still remains incomprehensive. Effects of root components on pyrene bioaccessibility, soil enzymes and microbial communities were explored in the paper, and their interactions in simulated pyrene and pyrene-diesel spiked microcosms were tried to give a reasonable explanation. Results indicated that root components enhanced the pyrene removal of bioaccessible and adsorbed fractions by 16.10 and 1.80 mg kg− 1, respectively, in pyrene-spiked soils at the end of the experiment. By contrast, root components increased the degradation of bioaccessible fraction by only 3.3 mg kg− 1 in pyrene-diesel spiked soils. Although the bound fractions of pyrene increased over time in treatments without root components, they remained relatively stable, ranging from 0.02 to 0.03 mg kg− 1, in root components amended treatments. Activities of soil enzymes (polyphenol oxidase, catalase, invertase, urease and alkaline phosphatase) varied differently in response to pollutants and root components. Analysis of phospholipid fatty acids revealed that root components increased the biomass of soil microorganisms and altered the microbial structure. Pearson correlation analysis proved positive correlations between all the microbial subgroups and pyrene removal in pyrene-spiked soils, but the degradation of bioaccessible pyrene was only positively related with microorganisms confirmed by monounsaturated fatty acids in pyrene-diesel spiked soils.
000836055 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000836055 588__ $$aDataset connected to CrossRef
000836055 7001_ $$0P:(DE-HGF)0$$aZhang, Xinying$$b1$$eCorresponding author
000836055 7001_ $$0P:(DE-HGF)0$$aLiu, Xiaoyan$$b2
000836055 7001_ $$0P:(DE-HGF)0$$aLiang, Xia$$b3
000836055 7001_ $$0P:(DE-HGF)0$$aChen, Xueping$$b4
000836055 773__ $$0PERI:(DE-600)1498726-0$$a10.1016/j.scitotenv.2017.04.083$$gVol. 599-600, p. 50 - 57$$p50 - 57$$tThe science of the total environment$$v599-600$$x0048-9697$$y2017
000836055 8564_ $$uhttps://juser.fz-juelich.de/record/836055/files/1-s2.0-S0048969717309208-main.pdf$$yRestricted
000836055 909CO $$ooai:juser.fz-juelich.de:836055$$pVDB:Earth_Environment$$pVDB
000836055 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165707$$aForschungszentrum Jülich$$b0$$kFZJ
000836055 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000836055 9141_ $$y2017
000836055 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836055 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI TOTAL ENVIRON : 2015
000836055 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836055 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836055 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836055 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836055 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836055 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836055 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836055 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836055 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836055 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000836055 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000836055 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836055 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000836055 980__ $$ajournal
000836055 980__ $$aVDB
000836055 980__ $$aI:(DE-Juel1)IBG-3-20101118
000836055 980__ $$aUNRESTRICTED