001     836071
005     20240712112819.0
024 7 _ |a 10.1002/anie.201607552
|2 doi
024 7 _ |a 0044-8249
|2 ISSN
024 7 _ |a 0570-0833
|2 ISSN
024 7 _ |a 1433-7851
|2 ISSN
024 7 _ |a 1521-3773
|2 ISSN
024 7 _ |a WOS:000400458700003
|2 WOS
024 7 _ |a altmetric:12515429
|2 altmetric
024 7 _ |a pmid:27714905
|2 pmid
037 _ _ |a FZJ-2017-05195
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Foit, Severin
|0 P:(DE-Juel1)166524
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Power-to-Syngas: An Enabling Technology for the Transition of the Energy System?
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505461728_21917
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Power-to-X concepts promise a reduction of greenhouse gas emissions simultaneously guaranteeing a safe energy supply even at high share of renewable power generation, thus becoming a cornerstone of a sustainable energy system. Power-to-syngas, that is, the electrochemical conversion of steam and carbon dioxide with the use of renewably generated electricity to syngas for the production of synfuels and high-value chemicals, offers an efficient technology to couple different energy-intense sectors, such as “traffic and transportation” and “chemical industry”. Syngas produced by co-electrolysis can thus be regarded as a key-enabling step for a transition of the energy system, which offers additionally features of CO2-valorization and closed carbon cycles. Here, we discuss advantages and current limitations of low- and high-temperature co-electrolysis. Advances in both fundamental understanding of the basic reaction schemes and stable high-performance materials are essential to further promote co-electrolysis.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vinke, Izaak C.
|0 P:(DE-Juel1)129936
|b 1
|u fzj
700 1 _ |a de Haart, L.G.J.
|0 P:(DE-Juel1)129952
|b 2
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 3
|u fzj
773 _ _ |a 10.1002/anie.201607552
|g Vol. 56, no. 20, p. 5402 - 5411
|0 PERI:(DE-600)2011836-3
|n 20
|p 5402 - 5411
|t Angewandte Chemie / International edition
|v 56
|y 2017
|x 1433-7851
856 4 _ |u https://juser.fz-juelich.de/record/836071/files/Foit_et_al-2017-Angewandte_Chemie_International_Edition.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836071/files/Foit_et_al-2017-Angewandte_Chemie_International_Edition.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836071/files/Foit_et_al-2017-Angewandte_Chemie_International_Edition.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836071/files/Foit_et_al-2017-Angewandte_Chemie_International_Edition.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836071/files/Foit_et_al-2017-Angewandte_Chemie_International_Edition.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836071/files/Foit_et_al-2017-Angewandte_Chemie_International_Edition.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836071
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166524
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANGEW CHEM INT EDIT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ANGEW CHEM INT EDIT : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21