001     836076
005     20210129230856.0
024 7 _ |2 doi
|a 10.1371/journal.pone.0177024
024 7 _ |2 Handle
|a 2128/15130
024 7 _ |a WOS:000400648500123
|2 WOS
037 _ _ |a FZJ-2017-05200
082 _ _ |a 500
100 1 _ |0 P:(DE-HGF)0
|a Kroeger, Tobias
|b 0
245 _ _ |a EDTA aggregates induce SYPRO orange-based fluorescence in thermal shift assay
260 _ _ |a Lawrence, Kan.
|b PLoS
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1502201472_1302
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Ethylenediaminetetraacetic acid (EDTA) is widely used in the life sciences as chelating ligand of metal ions. However, formation of supramolecular EDTA aggregates at pH > 8 has been reported, which may lead to artifactual assay results. When applied as a buffer component at pH ≈ 10 in differential scanning fluorimetry (TSA) using SYPRO Orange as fluorescent dye, we observed a sharp change in fluorescence intensity about 20°C lower than expected for the investigated protein. We hypothesized that this change results from SYPRO Orange/EDTA interactions. TSA experiments in the presence of SYPRO Orange using solutions that contain EDTA-Na+ but no protein were performed. The TSA experiments provide evidence that suggests that at pH > 9, EDTA4- interacts with SYPRO Orange in a temperature-dependent manner, leading to a fluorescence signal yielding a “denaturation temperature” of ~68°C. Titrating Ca2+ to SYPRO Orange and EDTA solutions quenched fluorescence. Ethylene glycol tetraacetic acid (EGTA) behaved similarly to EDTA. Analytical ultracentrifugation corroborated the formation of EDTA aggregates. Molecular dynamics simulations of free diffusion of EDTA-Na+ and SYPRO Orange of in total 27 μs suggested the first structural model of EDTA aggregates in which U-shaped EDTA4- arrange in an inverse bilayer-like manner, exposing ethylene moieties to the solvent, with which SYPRO Orange interacts. We conclude that EDTA aggregates induce a SYPRO Orange-based fluorescence in TSA. These results make it relevant to ascertain that future TSA results are not influenced by interference between EDTA, or EDTA-related molecules, and the fluorescent dye.
536 _ _ |0 G:(DE-HGF)POF3-553
|a 553 - Physical Basis of Diseases (POF3-553)
|c POF3-553
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)172887
|a Frieg, Benedikt
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Zhang, Tao
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Hansen, Finn K.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Marmann, Andreas
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Proksch, Peter
|b 5
700 1 _ |0 P:(DE-Juel1)162443
|a Nagel-Steger, Luitgard
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Groth, Georg
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Smits, Sander H. J.
|b 8
700 1 _ |0 P:(DE-Juel1)172663
|a Gohlke, Holger
|b 9
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2267670-3
|a 10.1371/journal.pone.0177024
|p e0177024
|t PLoS one
|v 12
|x 1932-6203
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/836076/files/EDTA%20aggregates%20induce%20SYPRO%20orange-based%20fluorescence%20in%20thermal%20shift%20assay.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:836076
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)172887
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162443
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)172663
|a Forschungszentrum Jülich
|b 9
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-553
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PLOS ONE : 2015
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21