000836077 001__ 836077
000836077 005__ 20210129230856.0
000836077 0247_ $$2doi$$a10.1021/acs.inorgchem.7b00460
000836077 0247_ $$2ISSN$$a0020-1669
000836077 0247_ $$2ISSN$$a1520-510X
000836077 0247_ $$2WOS$$aWOS:000405972200021
000836077 0247_ $$2altmetric$$aaltmetric:21441414
000836077 0247_ $$2pmid$$apmid:28650621
000836077 037__ $$aFZJ-2017-05201
000836077 082__ $$a540
000836077 1001_ $$0P:(DE-Juel1)157902$$aVanasschen, Christian$$b0$$eCorresponding author$$ufzj
000836077 245__ $$aNovel CDTA-based, Bifunctional Chelators for Stable and Inert Mn II Complexation: Synthesis and Physicochemical Characterization
000836077 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2017
000836077 3367_ $$2DRIVER$$aarticle
000836077 3367_ $$2DataCite$$aOutput Types/Journal article
000836077 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501243107_15511
000836077 3367_ $$2BibTeX$$aARTICLE
000836077 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836077 3367_ $$00$$2EndNote$$aJournal Article
000836077 520__ $$aIn the search for MnIIMR and PET/MR imaging agents with optimal balance between thermodynamic stability, kinetic inertness, and relaxivity, two novel bifunctional MnII chelators (BFMnCs) based on CDTA (trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid) weresynthesized. A six-step synthesis, involving the buildup of a functionalized trans -1,2-diaminocyclohexane core, provided CuAAC-reactive 6a and 6b bearing an alkyne or azide substituent on the cyclohexane ring, respectively (CuAAC = CuI-catalyzed azide−alkyne 1,3-dipolar cyclo-addition). Thermodynamic, kinetic, and relaxometric studies were performed with 4-HET-CDTA (8a)as a model chelator, synthesized in two steps from6a. The protonation constants revealed that8a is slightly less basic than CDTA and forms a Mn II complex of marginally lower thermodynamic stability (log KMnL= 13.80 vs 14.32, respectively), while the conditional stability constant is almost identical for both chelates (pMn = 8.62 vs 8.68, respectively). Kinetic assessment of the CuII-mediated transmetalation of [Mn(4-HET-CDTA)]2−showed that proton-assisted complex dissociation is slightly slower than for [Mn(CDTA)]2−(k1= 297 vs 400 M−1s−1, respectively). portantly, the dissociation half-life near physiologicalitions (pH 7.4, 25°C) underlined that [Mn(4-HET-CDTA)]2−is∼35% more inert (t1/2= 16.2 vs 12.1 h, respectively).Thosefindings may be accounted for by a combination of reduced basicity and increased rigidity of the ligand. Analysis of the17O NMR and1H NMRD data attributed the high relaxivity of [Mn(4-HET-CDTA)]2−(r1= 4.56 mM−1s−1vs 3.65 mM−1s−1for [Mn(CDTA)]2−; 20 MHz, 25°C) to slower rotational dynamics (τR298= 105 ps). Additionally, the fast water exchange of thecomplex correlates well with the value reported for [Mn(CDTA)]2−(kex298= 17.6×107vs 14.0×107s−1, respectively). Giventhe exquisite compromise between thermodynamic stability, kinetic inertness, and relaxivity achieved by [Mn(4-HET-CDTA)]2−,appropriately designed CuAAC-conjugates of6a/6bare promising precursors for the preparation of targeted, bioresponsive, orhigh relaxivity manganese-based PET/MR tracers (52g/55MnII) and MR contrast agents (MnII).
000836077 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000836077 588__ $$aDataset connected to CrossRef
000836077 7001_ $$0P:(DE-HGF)0$$aMolnár, Enikő$$b1
000836077 7001_ $$0P:(DE-HGF)0$$aTircsó, Gyula$$b2
000836077 7001_ $$0P:(DE-HGF)0$$aKálmán, Ferenc K.$$b3
000836077 7001_ $$0P:(DE-HGF)0$$aTóth, Éva$$b4
000836077 7001_ $$0P:(DE-Juel1)162273$$aBrandt, Marie$$b5$$ufzj
000836077 7001_ $$0P:(DE-HGF)0$$aCoenen, Heinz H.$$b6
000836077 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b7$$ufzj
000836077 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.7b00460$$gVol. 56, no. 14, p. 7746 - 7760$$n14$$p7746 - 7760$$tInorganic chemistry$$v56$$x1520-510X$$y2017
000836077 8564_ $$uhttps://juser.fz-juelich.de/record/836077/files/acs.inorgchem.7b00460%281%29.pdf$$yRestricted
000836077 909CO $$ooai:juser.fz-juelich.de:836077$$pVDB
000836077 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157902$$aForschungszentrum Jülich$$b0$$kFZJ
000836077 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162273$$aForschungszentrum Jülich$$b5$$kFZJ
000836077 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b7$$kFZJ
000836077 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000836077 9141_ $$y2017
000836077 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836077 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2015
000836077 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836077 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836077 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836077 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836077 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836077 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836077 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836077 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836077 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836077 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836077 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836077 920__ $$lyes
000836077 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000836077 980__ $$ajournal
000836077 980__ $$aVDB
000836077 980__ $$aI:(DE-Juel1)INM-5-20090406
000836077 980__ $$aUNRESTRICTED