001     836077
005     20210129230856.0
024 7 _ |a 10.1021/acs.inorgchem.7b00460
|2 doi
024 7 _ |a 0020-1669
|2 ISSN
024 7 _ |a 1520-510X
|2 ISSN
024 7 _ |a WOS:000405972200021
|2 WOS
024 7 _ |a altmetric:21441414
|2 altmetric
024 7 _ |a pmid:28650621
|2 pmid
037 _ _ |a FZJ-2017-05201
082 _ _ |a 540
100 1 _ |a Vanasschen, Christian
|0 P:(DE-Juel1)157902
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Novel CDTA-based, Bifunctional Chelators for Stable and Inert Mn II Complexation: Synthesis and Physicochemical Characterization
260 _ _ |a Washington, DC
|c 2017
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501243107_15511
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the search for MnIIMR and PET/MR imaging agents with optimal balance between thermodynamic stability, kinetic inertness, and relaxivity, two novel bifunctional MnII chelators (BFMnCs) based on CDTA (trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid) weresynthesized. A six-step synthesis, involving the buildup of a functionalized trans -1,2-diaminocyclohexane core, provided CuAAC-reactive 6a and 6b bearing an alkyne or azide substituent on the cyclohexane ring, respectively (CuAAC = CuI-catalyzed azide−alkyne 1,3-dipolar cyclo-addition). Thermodynamic, kinetic, and relaxometric studies were performed with 4-HET-CDTA (8a)as a model chelator, synthesized in two steps from6a. The protonation constants revealed that8a is slightly less basic than CDTA and forms a Mn II complex of marginally lower thermodynamic stability (log KMnL= 13.80 vs 14.32, respectively), while the conditional stability constant is almost identical for both chelates (pMn = 8.62 vs 8.68, respectively). Kinetic assessment of the CuII-mediated transmetalation of [Mn(4-HET-CDTA)]2−showed that proton-assisted complex dissociation is slightly slower than for [Mn(CDTA)]2−(k1= 297 vs 400 M−1s−1, respectively). portantly, the dissociation half-life near physiologicalitions (pH 7.4, 25°C) underlined that [Mn(4-HET-CDTA)]2−is∼35% more inert (t1/2= 16.2 vs 12.1 h, respectively).Thosefindings may be accounted for by a combination of reduced basicity and increased rigidity of the ligand. Analysis of the17O NMR and1H NMRD data attributed the high relaxivity of [Mn(4-HET-CDTA)]2−(r1= 4.56 mM−1s−1vs 3.65 mM−1s−1for [Mn(CDTA)]2−; 20 MHz, 25°C) to slower rotational dynamics (τR298= 105 ps). Additionally, the fast water exchange of thecomplex correlates well with the value reported for [Mn(CDTA)]2−(kex298= 17.6×107vs 14.0×107s−1, respectively). Giventhe exquisite compromise between thermodynamic stability, kinetic inertness, and relaxivity achieved by [Mn(4-HET-CDTA)]2−,appropriately designed CuAAC-conjugates of6a/6bare promising precursors for the preparation of targeted, bioresponsive, orhigh relaxivity manganese-based PET/MR tracers (52g/55MnII) and MR contrast agents (MnII).
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Molnár, Enikő
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tircsó, Gyula
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kálmán, Ferenc K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tóth, Éva
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brandt, Marie
|0 P:(DE-Juel1)162273
|b 5
|u fzj
700 1 _ |a Coenen, Heinz H.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 7
|u fzj
773 _ _ |a 10.1021/acs.inorgchem.7b00460
|g Vol. 56, no. 14, p. 7746 - 7760
|0 PERI:(DE-600)1484438-2
|n 14
|p 7746 - 7760
|t Inorganic chemistry
|v 56
|y 2017
|x 1520-510X
856 4 _ |u https://juser.fz-juelich.de/record/836077/files/acs.inorgchem.7b00460%281%29.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836077
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162273
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166419
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INORG CHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21