000836079 001__ 836079
000836079 005__ 20240711085612.0
000836079 0247_ $$2doi$$a10.1016/j.carbon.2016.01.041
000836079 0247_ $$2ISSN$$a0008-6223
000836079 0247_ $$2ISSN$$a1873-3891
000836079 0247_ $$2WOS$$aWOS:000369961400048
000836079 037__ $$aFZJ-2017-05203
000836079 041__ $$aEnglish
000836079 082__ $$a540
000836079 1001_ $$0P:(DE-HGF)0$$aGuo, Fangwei$$b0
000836079 245__ $$aGrowth of carbon nanofibers/tubes by an in-situ polymerization route without metal-catalyst
000836079 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000836079 3367_ $$2DRIVER$$aarticle
000836079 3367_ $$2DataCite$$aOutput Types/Journal article
000836079 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501241668_13379
000836079 3367_ $$2BibTeX$$aARTICLE
000836079 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836079 3367_ $$00$$2EndNote$$aJournal Article
000836079 520__ $$aAn in-situ pyrolytic and polymerizable method was investigated to grow carbon nano-fibers/tubes (CNF/CNT) without metal-catalysts. The 3 mol % yttria-stabilized zirconia hollow fiber membranes (3YSZ-HFM) were used as supports for growing the CNF/CNT. The polyethersulfone (PES) and polyvinylpyrrolidone (PVP) were used as polymer binders and carbon sources. The as-grown CNF (formed at 1250 °C/4h) had diameters of 50–100 nm and lengths of 1–50 μm, and the length gradually decreased along radial direction of the supports. The as-grown CNT (formed at 1450 °C/4h) were shorter and larger in diameter. A novel solid-state transformation mechanism was proposed, in which the carbon black particles (CB) were the carbonized products of PES/PVP, then the CB grew into the CNF/CNT. Thermal stresses originated from sintering of CB itself and 3YSZ particles were believed to be the driving forces that promoting the CNT/CNF nucleation and growth. The thermal stresses of the pure 3YSZ-HFM and 3YSZ/(CNF/CNT)-HFM were theoretically and experimentally discussed base on linear elastic thoery and Raman spectroscopy.
000836079 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000836079 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000836079 588__ $$aDataset connected to CrossRef
000836079 7001_ $$0P:(DE-HGF)0$$aWang, Guowei$$b1
000836079 7001_ $$0P:(DE-HGF)0$$aJiang, Zhiwei$$b2
000836079 7001_ $$0P:(DE-Juel1)168104$$aLiu, Yang$$b3
000836079 7001_ $$0P:(DE-HGF)0$$aZhao, Xiaofeng$$b4$$eCorresponding author
000836079 7001_ $$0P:(DE-HGF)0$$aXiao, Ping$$b5
000836079 773__ $$0PERI:(DE-600)2014715-6$$a10.1016/j.carbon.2016.01.041$$gVol. 100, p. 417 - 427$$p417 - 427$$tCarbon$$v100$$x0008-6223$$y2016
000836079 8564_ $$uhttps://juser.fz-juelich.de/record/836079/files/1-s2.0-S0008622316300410-main.pdf$$yRestricted
000836079 8564_ $$uhttps://juser.fz-juelich.de/record/836079/files/1-s2.0-S0008622316300410-main.gif?subformat=icon$$xicon$$yRestricted
000836079 8564_ $$uhttps://juser.fz-juelich.de/record/836079/files/1-s2.0-S0008622316300410-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836079 8564_ $$uhttps://juser.fz-juelich.de/record/836079/files/1-s2.0-S0008622316300410-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836079 8564_ $$uhttps://juser.fz-juelich.de/record/836079/files/1-s2.0-S0008622316300410-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836079 8564_ $$uhttps://juser.fz-juelich.de/record/836079/files/1-s2.0-S0008622316300410-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836079 909CO $$ooai:juser.fz-juelich.de:836079$$pVDB
000836079 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168104$$aForschungszentrum Jülich$$b3$$kFZJ
000836079 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000836079 9141_ $$y2017
000836079 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCARBON : 2015
000836079 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836079 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836079 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836079 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836079 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836079 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836079 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836079 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836079 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836079 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCARBON : 2015
000836079 920__ $$lyes
000836079 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000836079 980__ $$ajournal
000836079 980__ $$aVDB
000836079 980__ $$aI:(DE-Juel1)IEK-1-20101013
000836079 980__ $$aUNRESTRICTED
000836079 981__ $$aI:(DE-Juel1)IMD-2-20101013