000836100 001__ 836100
000836100 005__ 20240712112820.0
000836100 0247_ $$2doi$$a10.1039/C7CP04296E
000836100 0247_ $$2ISSN$$a1463-9076
000836100 0247_ $$2ISSN$$a1463-9084
000836100 0247_ $$2Handle$$a2128/15278
000836100 0247_ $$2WOS$$aWOS:000408257700002
000836100 037__ $$aFZJ-2017-05224
000836100 041__ $$aEnglish
000836100 082__ $$a540
000836100 1001_ $$0P:(DE-HGF)0$$aEmondts, M.$$b0
000836100 245__ $$aPolarization Transfer Efficiency in PHIP Experiments
000836100 260__ $$aCambridge$$bRSC Publ.$$c2017
000836100 3367_ $$2DRIVER$$aarticle
000836100 3367_ $$2DataCite$$aOutput Types/Journal article
000836100 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505400215_23757
000836100 3367_ $$2BibTeX$$aARTICLE
000836100 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836100 3367_ $$00$$2EndNote$$aJournal Article
000836100 520__ $$aParahydrogen induced polarization (PHIP) is a hyperpolarization method for NMR signal enhancement with applications in spectroscopy and imaging. Although parahydrogen can be easily enriched up to nearly 95%, the polarization detected on the hydrogenated substrate is substantially lower, where numerous loss mechanisms between the start of the hydrogenation reaction and detection affect polarization levels. The quality of PHIP systems is commonly determined by stating either the polarization degree or the enhancement factor of the product at the time of detection. In this study, we present a method that allows the distinction of polarization loss due to both the catalytic cycle and T1 relaxation of the formed product prior to detection. We determine the influence of homogeneous catalysts and define a rigorous measure of the polarization transfer efficiency (PTE). Our results show that the PTE strongly depends on the concentration of all components and the chemical structure of the catalyst as well as on the magnetic field of detection.
000836100 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000836100 588__ $$aDataset connected to CrossRef
000836100 7001_ $$0P:(DE-HGF)0$$aColell, J.$$b1
000836100 7001_ $$0P:(DE-HGF)0$$aBlümich, B.$$b2
000836100 7001_ $$0P:(DE-Juel1)168465$$aSchleker, Peter Philipp Maria$$b3$$eCorresponding author
000836100 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP04296E$$gp. 10.1039.C7CP04296E$$n33$$p21933-21937$$tPhysical chemistry, chemical physics$$v19$$x1463-9084$$y2017
000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.pdf$$yOpenAccess
000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.gif?subformat=icon$$xicon$$yOpenAccess
000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000836100 909CO $$ooai:juser.fz-juelich.de:836100$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000836100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000836100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000836100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b3$$kFZJ
000836100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000836100 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000836100 9141_ $$y2017
000836100 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000836100 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836100 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836100 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000836100 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836100 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836100 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836100 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836100 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000836100 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836100 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836100 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836100 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836100 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836100 920__ $$lyes
000836100 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000836100 9801_ $$aFullTexts
000836100 980__ $$ajournal
000836100 980__ $$aVDB
000836100 980__ $$aUNRESTRICTED
000836100 980__ $$aI:(DE-Juel1)IEK-9-20110218
000836100 981__ $$aI:(DE-Juel1)IET-1-20110218