000836100 001__ 836100 000836100 005__ 20240712112820.0 000836100 0247_ $$2doi$$a10.1039/C7CP04296E 000836100 0247_ $$2ISSN$$a1463-9076 000836100 0247_ $$2ISSN$$a1463-9084 000836100 0247_ $$2Handle$$a2128/15278 000836100 0247_ $$2WOS$$aWOS:000408257700002 000836100 037__ $$aFZJ-2017-05224 000836100 041__ $$aEnglish 000836100 082__ $$a540 000836100 1001_ $$0P:(DE-HGF)0$$aEmondts, M.$$b0 000836100 245__ $$aPolarization Transfer Efficiency in PHIP Experiments 000836100 260__ $$aCambridge$$bRSC Publ.$$c2017 000836100 3367_ $$2DRIVER$$aarticle 000836100 3367_ $$2DataCite$$aOutput Types/Journal article 000836100 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505400215_23757 000836100 3367_ $$2BibTeX$$aARTICLE 000836100 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000836100 3367_ $$00$$2EndNote$$aJournal Article 000836100 520__ $$aParahydrogen induced polarization (PHIP) is a hyperpolarization method for NMR signal enhancement with applications in spectroscopy and imaging. Although parahydrogen can be easily enriched up to nearly 95%, the polarization detected on the hydrogenated substrate is substantially lower, where numerous loss mechanisms between the start of the hydrogenation reaction and detection affect polarization levels. The quality of PHIP systems is commonly determined by stating either the polarization degree or the enhancement factor of the product at the time of detection. In this study, we present a method that allows the distinction of polarization loss due to both the catalytic cycle and T1 relaxation of the formed product prior to detection. We determine the influence of homogeneous catalysts and define a rigorous measure of the polarization transfer efficiency (PTE). Our results show that the PTE strongly depends on the concentration of all components and the chemical structure of the catalyst as well as on the magnetic field of detection. 000836100 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000836100 588__ $$aDataset connected to CrossRef 000836100 7001_ $$0P:(DE-HGF)0$$aColell, J.$$b1 000836100 7001_ $$0P:(DE-HGF)0$$aBlümich, B.$$b2 000836100 7001_ $$0P:(DE-Juel1)168465$$aSchleker, Peter Philipp Maria$$b3$$eCorresponding author 000836100 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP04296E$$gp. 10.1039.C7CP04296E$$n33$$p21933-21937$$tPhysical chemistry, chemical physics$$v19$$x1463-9084$$y2017 000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.pdf$$yOpenAccess 000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.gif?subformat=icon$$xicon$$yOpenAccess 000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000836100 8564_ $$uhttps://juser.fz-juelich.de/record/836100/files/c7cp04296e.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000836100 909CO $$ooai:juser.fz-juelich.de:836100$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000836100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH 000836100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH 000836100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b3$$kFZJ 000836100 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH 000836100 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000836100 9141_ $$y2017 000836100 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000836100 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000836100 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000836100 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015 000836100 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000836100 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000836100 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000836100 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000836100 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000836100 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000836100 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000836100 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000836100 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000836100 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000836100 920__ $$lyes 000836100 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0 000836100 9801_ $$aFullTexts 000836100 980__ $$ajournal 000836100 980__ $$aVDB 000836100 980__ $$aUNRESTRICTED 000836100 980__ $$aI:(DE-Juel1)IEK-9-20110218 000836100 981__ $$aI:(DE-Juel1)IET-1-20110218