000836101 001__ 836101
000836101 005__ 20240712112820.0
000836101 0247_ $$2doi$$a10.1002/cphc.201700750
000836101 0247_ $$2ISSN$$a1439-4235
000836101 0247_ $$2ISSN$$a1439-7641
000836101 0247_ $$2pmid$$apmid:28682000
000836101 0247_ $$2WOS$$aWOS:000411193200002
000836101 0247_ $$2altmetric$$aaltmetric:23841092
000836101 037__ $$aFZJ-2017-05225
000836101 041__ $$aEnglish
000836101 082__ $$a540
000836101 1001_ $$0P:(DE-Juel1)168465$$aSchleker, Peter Philipp Maria$$b0$$eCorresponding author
000836101 245__ $$aHyperpolarizing Water with para-Hydrogen
000836101 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2017
000836101 3367_ $$2DRIVER$$aarticle
000836101 3367_ $$2DataCite$$aOutput Types/Journal article
000836101 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548257007_28685
000836101 3367_ $$2BibTeX$$aARTICLE
000836101 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836101 3367_ $$00$$2EndNote$$aJournal Article
000836101 520__ $$aStudies of water-based systems are of fundamental interest for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) as water is the most abundant and important medium for global living. Hence, increasing the polarization of water and dissolved compounds is particularly attractive for biomedical applications such as investigations of intermolecular interactions and metabolite structures as well as for imaging purposes. In this work, we show a new approach based on para enriched hydrogen (p-H2) that enables the hyperpolarization of bulk water if a suitable catalytic system is employed. The results indicate that the polarization is transferred by a new exchange mechanism.
000836101 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000836101 588__ $$aDataset connected to CrossRef
000836101 7001_ $$0P:(DE-HGF)0$$aLehmkuhl, S.$$b1
000836101 7001_ $$0P:(DE-HGF)0$$aEmondts, Meike$$b2
000836101 7001_ $$0P:(DE-HGF)0$$aSchubert, Lukas$$b3
000836101 7001_ $$0P:(DE-HGF)0$$aSpannring, Peter$$b4
000836101 7001_ $$0P:(DE-HGF)0$$aBlümich, Bernhard$$b5
000836101 773__ $$0PERI:(DE-600)2025223-7$$a10.1002/cphc.201700750$$n18$$p2426-2429$$tChemPhysChem$$v18$$x1439-4235$$y2017
000836101 8564_ $$uhttps://juser.fz-juelich.de/record/836101/files/Lehmkuhl_et_al-2017-ChemPhysChem.pdf$$yRestricted
000836101 8564_ $$uhttps://juser.fz-juelich.de/record/836101/files/Lehmkuhl_et_al-2017-ChemPhysChem.gif?subformat=icon$$xicon$$yRestricted
000836101 8564_ $$uhttps://juser.fz-juelich.de/record/836101/files/Lehmkuhl_et_al-2017-ChemPhysChem.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836101 8564_ $$uhttps://juser.fz-juelich.de/record/836101/files/Lehmkuhl_et_al-2017-ChemPhysChem.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836101 8564_ $$uhttps://juser.fz-juelich.de/record/836101/files/Lehmkuhl_et_al-2017-ChemPhysChem.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836101 8564_ $$uhttps://juser.fz-juelich.de/record/836101/files/Lehmkuhl_et_al-2017-ChemPhysChem.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836101 909CO $$ooai:juser.fz-juelich.de:836101$$pVDB
000836101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b0$$kFZJ
000836101 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)168465$$aRWTH Aachen$$b0$$kRWTH
000836101 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)168465$$a MPI-CEC$$b0
000836101 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000836101 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000836101 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000836101 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000836101 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000836101 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000836101 9141_ $$y2017
000836101 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836101 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836101 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836101 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMPHYSCHEM : 2017
000836101 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000836101 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836101 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836101 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836101 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836101 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836101 920__ $$lyes
000836101 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000836101 980__ $$ajournal
000836101 980__ $$aVDB
000836101 980__ $$aI:(DE-Juel1)IEK-9-20110218
000836101 980__ $$aUNRESTRICTED
000836101 981__ $$aI:(DE-Juel1)IET-1-20110218