001     836128
005     20220930130127.0
024 7 _ |a 10.2136/vzj2016.12.0125
|2 doi
024 7 _ |a 2128/15295
|2 Handle
024 7 _ |a WOS:000425218400003
|2 WOS
037 _ _ |a FZJ-2017-05251
082 _ _ |a 550
100 1 _ |a Cai, Gaochao
|0 P:(DE-Juel1)156154
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Parameterization of Root Water Uptake Models Considering Dynamic Root Distributions and Water Uptake Compensation
260 _ _ |a Madison, Wis.
|c 2017
|b SSSA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505737753_31857
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The spatiotemporal distribution of root water uptake (RWU) depends on the dynamics of the root distribution and compensatory uptake from wetter regions in the root zone. This work aimed to parameterize three RWU models with different representations of compensation: the Feddes–Jarvis model that uses an empirical function, the Feddes model without compensation, and the Couvreur model that is based on a physical description of water flow in the soil–root system. These models were implemented in HYDRUS-1D, and soil hydraulic parameters were optimized by inverse modeling using soil water content and potential measurements and observations of root distributions of winter wheat (Triticum aestivum L.) in horizontally installed rhizotubes. Soil moisture was equally well predicted by the three models, and the soil hydraulic parameters optimized by the models with compensation were comparable. The obtained RWU parameters of the Feddes–Jarvis model were consistent with data reported in the literature, although the pressure heads h3l and h3h for lower and higher transpirations rates, respectively, could not be uniquely identified. Response surfaces of the objective function showed that the root-related parameters of the Couvreur model could be identified using inverse modeling. Furthermore, these parameters were consistent with combined root architectural and hydraulic observations from the literature. The Feddes–Jarvis and Couvreur models simulated similar root-system-scale stress functions that link total RWU to the effective root zone water potential, suggesting that parameters may be transferable between the two models. Simulated RWU profiles differed due to different water redistribution by the root system, but the measurements were not sufficiently precise to observe this redistribution
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 1
|u fzj
700 1 _ |a Couvreur, Valentin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mboh, Cho Miltin
|0 P:(DE-Juel1)129501
|b 3
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 4
|u fzj
773 _ _ |a 10.2136/vzj2016.12.0125
|g Vol. 0, no. 0, p. 0 -
|0 PERI:(DE-600)2088189-7
|n
|p
|t Vadose zone journal
|v
|y 2017
|x 1539-1663
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/836128/files/vzj-0-0-vzj2016.12.0125.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/836128/files/vzj-0-0-vzj2016.12.0125.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/836128/files/vzj-0-0-vzj2016.12.0125.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/836128/files/vzj-0-0-vzj2016.12.0125.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/836128/files/vzj-0-0-vzj2016.12.0125.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/836128/files/vzj-0-0-vzj2016.12.0125.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:836128
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156154
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21