000836132 001__ 836132
000836132 005__ 20240712084559.0
000836132 0247_ $$2doi$$a10.1016/j.chemgeo.2017.07.021
000836132 0247_ $$2ISSN$$a0009-2541
000836132 0247_ $$2ISSN$$a1872-6836
000836132 0247_ $$2WOS$$aWOS:000407861200057
000836132 0247_ $$2Handle$$a2128/15990
000836132 037__ $$aFZJ-2017-05255
000836132 041__ $$aEnglish
000836132 082__ $$a550
000836132 1001_ $$0P:(DE-Juel1)157607$$aWeber, Juliane$$b0$$eCorresponding author$$ufzj
000836132 245__ $$aRetention of $^{226}$Ra by barite: The role of internal porosity
000836132 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000836132 3367_ $$2DRIVER$$aarticle
000836132 3367_ $$2DataCite$$aOutput Types/Journal article
000836132 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511863297_21605
000836132 3367_ $$2BibTeX$$aARTICLE
000836132 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836132 3367_ $$00$$2EndNote$$aJournal Article
000836132 520__ $$aThe role of internal macropores and nano-scale pores for the uptake of 226Ra into barite was studied via scanning and transmission electron microscopy as well as focused ion beam methods. A temporal evolution of the internal microstructure and the Ra distribution was observed on samples taken from long-term Ra uptake experiments. The results of this study clearly show a significant impact of the presence of Ra leading to a complete reconstruction of the internal barite microstructure, whereas the microstructure of Ra-free reference samples remained unchanged. The initial internal barite microstructure contains a connected network of macropores and a layered structure of nano-scale pores which, in the presence of Ra, coalesced in favor of larger pores during the experiment. A clear relationship between the Ra uptake and the internal porosity was observed by high-resolution STEM-EDX mappings. Starting from strongly enhanced Ra concentrations in the solid in the vicinity of the pores, Ra is temporarily inhomogeneously distributed within the barite particles. At later stages of the long-term experiment the Ra distribution becomes homogenous while nano-scale and macro-scale pores disappear. In conclusion, the uptake of Ra into barite takes place by a special case of dissolution/reprecipitation from the inside of the particle to the outside.
000836132 536__ $$0G:(DE-HGF)POF3-161$$a161 - Nuclear Waste Management (POF3-161)$$cPOF3-161$$fPOF III$$x0
000836132 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000836132 588__ $$aDataset connected to CrossRef
000836132 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b1$$ufzj
000836132 7001_ $$0P:(DE-Juel1)130364$$aKlinkenberg, Martina$$b2
000836132 7001_ $$0P:(DE-Juel1)130324$$aBosbach, Dirk$$b3$$ufzj
000836132 7001_ $$0P:(DE-Juel1)138713$$aKruth, Maximilian$$b4$$ufzj
000836132 7001_ $$0P:(DE-Juel1)144040$$aBrandt, Felix$$b5$$ufzj
000836132 773__ $$0PERI:(DE-600)1492506-0$$a10.1016/j.chemgeo.2017.07.021$$gp. S0009254117304187$$p722-732$$tChemical geology$$v466$$x0009-2541$$y2017
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/1-s2.0-S0009254117304187-main.pdf$$yRestricted
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/1-s2.0-S0009254117304187-main.gif?subformat=icon$$xicon$$yRestricted
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/1-s2.0-S0009254117304187-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/1-s2.0-S0009254117304187-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/1-s2.0-S0009254117304187-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/1-s2.0-S0009254117304187-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/Weber%20et%20al%202017%20Chem%20Geol.pdf$$yPublished on 2017-07-26. Available in OpenAccess from 2019-07-26.
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/Weber%20et%20al%202017%20Chem%20Geol.gif?subformat=icon$$xicon$$yPublished on 2017-07-26. Available in OpenAccess from 2019-07-26.
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/Weber%20et%20al%202017%20Chem%20Geol.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2017-07-26. Available in OpenAccess from 2019-07-26.
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/Weber%20et%20al%202017%20Chem%20Geol.jpg?subformat=icon-180$$xicon-180$$yPublished on 2017-07-26. Available in OpenAccess from 2019-07-26.
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/Weber%20et%20al%202017%20Chem%20Geol.jpg?subformat=icon-640$$xicon-640$$yPublished on 2017-07-26. Available in OpenAccess from 2019-07-26.
000836132 8564_ $$uhttps://juser.fz-juelich.de/record/836132/files/Weber%20et%20al%202017%20Chem%20Geol.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-07-26. Available in OpenAccess from 2019-07-26.
000836132 909CO $$ooai:juser.fz-juelich.de:836132$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000836132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157607$$aForschungszentrum Jülich$$b0$$kFZJ
000836132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b1$$kFZJ
000836132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130364$$aForschungszentrum Jülich$$b2$$kFZJ
000836132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130324$$aForschungszentrum Jülich$$b3$$kFZJ
000836132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138713$$aForschungszentrum Jülich$$b4$$kFZJ
000836132 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144040$$aForschungszentrum Jülich$$b5$$kFZJ
000836132 9131_ $$0G:(DE-HGF)POF3-161$$1G:(DE-HGF)POF3-160$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lNukleare Entsorgung und Sicherheit sowie Strahlenforschung$$vNuclear Waste Management$$x0
000836132 9141_ $$y2017
000836132 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836132 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836132 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000836132 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM GEOL : 2015
000836132 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836132 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836132 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836132 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836132 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836132 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836132 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836132 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836132 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836132 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836132 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000836132 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
000836132 9801_ $$aFullTexts
000836132 980__ $$ajournal
000836132 980__ $$aVDB
000836132 980__ $$aUNRESTRICTED
000836132 980__ $$aI:(DE-Juel1)IEK-6-20101013
000836132 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000836132 981__ $$aI:(DE-Juel1)IFN-2-20101013