000836138 001__ 836138
000836138 005__ 20210129230904.0
000836138 0247_ $$2doi$$a10.1152/jn.00321.2017
000836138 0247_ $$2ISSN$$a0022-3077
000836138 0247_ $$2ISSN$$a1522-1598
000836138 0247_ $$2pmid$$apmid:28724783
000836138 0247_ $$2WOS$$aWOS:000412642900031
000836138 0247_ $$2altmetric$$aaltmetric:27305765
000836138 037__ $$aFZJ-2017-05261
000836138 082__ $$a610
000836138 1001_ $$0P:(DE-HGF)0$$aMantziaris, Charalampos$$b0
000836138 245__ $$aIntra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect
000836138 260__ $$aBethesda, Md.$$bSoc.$$c2017
000836138 3367_ $$2DRIVER$$aarticle
000836138 3367_ $$2DataCite$$aOutput Types/Journal article
000836138 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507551831_21550
000836138 3367_ $$2BibTeX$$aARTICLE
000836138 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836138 3367_ $$00$$2EndNote$$aJournal Article
000836138 520__ $$aTo efficiently move around, animals need to coordinate their limbs. Proper, context-dependent coupling among the neural networks underlying leg movement is necessary for generating intersegmental coordination. In the slow-walking stick insect, local sensory information is very important for shaping coordination. However, central coupling mechanisms among segmental central pattern generators (CPGs) may also contribute to this. Here, we analyzed the interactions between contralateral networks that drive the depressor trochanteris muscle of the legs in both isolated and interconnected deafferented thoracic ganglia of the stick insect on application of pilocarpine, a muscarinic acetylcholine receptor agonist. Our results show that depressor CPG activity is only weakly coupled between all segments. Intrasegmental phase relationships differ between the three isolated ganglia, and they are modified and stabilized when ganglia are interconnected. However, the coordination patterns that emerge do not resemble those observed during walking. Our findings are in line with recent studies and highlight the influence of sensory input on coordination in slowly walking insects. Finally, as a direct interaction between depressor CPG networks and contralateral motoneurons could not be observed, we hypothesize that coupling is based on interactions at the level of CPG interneurons.
000836138 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000836138 588__ $$aDataset connected to CrossRef
000836138 7001_ $$0P:(DE-HGF)0$$aBockemühl, Till$$b1
000836138 7001_ $$0P:(DE-HGF)0$$aHolmes, Philip$$b2
000836138 7001_ $$0P:(DE-HGF)0$$aBorgmann, Anke$$b3
000836138 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b4$$ufzj
000836138 7001_ $$0P:(DE-HGF)0$$aBueschges, Ansgar$$b5$$eCorresponding author
000836138 773__ $$0PERI:(DE-600)1467889-5$$a10.1152/jn.00321.2017$$gp. jn.00321.2017 -$$n4$$p 2296-2310$$tJournal of neurophysiology$$v118$$x1522-1598$$y2017
000836138 8564_ $$uhttps://juser.fz-juelich.de/record/836138/files/2296.full.pdf$$yRestricted
000836138 8564_ $$uhttps://juser.fz-juelich.de/record/836138/files/2296.full.gif?subformat=icon$$xicon$$yRestricted
000836138 8564_ $$uhttps://juser.fz-juelich.de/record/836138/files/2296.full.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836138 8564_ $$uhttps://juser.fz-juelich.de/record/836138/files/2296.full.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836138 8564_ $$uhttps://juser.fz-juelich.de/record/836138/files/2296.full.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836138 8564_ $$uhttps://juser.fz-juelich.de/record/836138/files/2296.full.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836138 909CO $$ooai:juser.fz-juelich.de:836138$$pVDB
000836138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b4$$kFZJ
000836138 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000836138 9141_ $$y2017
000836138 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836138 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836138 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836138 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836138 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROPHYSIOL : 2015
000836138 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836138 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836138 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836138 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836138 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836138 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836138 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000836138 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000836138 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000836138 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836138 920__ $$lyes
000836138 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000836138 980__ $$ajournal
000836138 980__ $$aVDB
000836138 980__ $$aI:(DE-Juel1)INM-3-20090406
000836138 980__ $$aUNRESTRICTED