001     836138
005     20210129230904.0
024 7 _ |a 10.1152/jn.00321.2017
|2 doi
024 7 _ |a 0022-3077
|2 ISSN
024 7 _ |a 1522-1598
|2 ISSN
024 7 _ |a pmid:28724783
|2 pmid
024 7 _ |a WOS:000412642900031
|2 WOS
024 7 _ |a altmetric:27305765
|2 altmetric
037 _ _ |a FZJ-2017-05261
082 _ _ |a 610
100 1 _ |a Mantziaris, Charalampos
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect
260 _ _ |a Bethesda, Md.
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507551831_21550
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To efficiently move around, animals need to coordinate their limbs. Proper, context-dependent coupling among the neural networks underlying leg movement is necessary for generating intersegmental coordination. In the slow-walking stick insect, local sensory information is very important for shaping coordination. However, central coupling mechanisms among segmental central pattern generators (CPGs) may also contribute to this. Here, we analyzed the interactions between contralateral networks that drive the depressor trochanteris muscle of the legs in both isolated and interconnected deafferented thoracic ganglia of the stick insect on application of pilocarpine, a muscarinic acetylcholine receptor agonist. Our results show that depressor CPG activity is only weakly coupled between all segments. Intrasegmental phase relationships differ between the three isolated ganglia, and they are modified and stabilized when ganglia are interconnected. However, the coordination patterns that emerge do not resemble those observed during walking. Our findings are in line with recent studies and highlight the influence of sensory input on coordination in slowly walking insects. Finally, as a direct interaction between depressor CPG networks and contralateral motoneurons could not be observed, we hypothesize that coupling is based on interactions at the level of CPG interneurons.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bockemühl, Till
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Holmes, Philip
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Borgmann, Anke
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Daun, Silvia
|0 P:(DE-Juel1)162297
|b 4
|u fzj
700 1 _ |a Bueschges, Ansgar
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1152/jn.00321.2017
|g p. jn.00321.2017 -
|0 PERI:(DE-600)1467889-5
|n 4
|p 2296-2310
|t Journal of neurophysiology
|v 118
|y 2017
|x 1522-1598
856 4 _ |u https://juser.fz-juelich.de/record/836138/files/2296.full.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836138/files/2296.full.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836138/files/2296.full.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836138/files/2296.full.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836138/files/2296.full.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836138/files/2296.full.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836138
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162297
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROPHYSIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21