000836148 001__ 836148
000836148 005__ 20220930130128.0
000836148 0247_ $$2doi$$a10.1371/journal.pone.0180780
000836148 0247_ $$2Handle$$a2128/14968
000836148 0247_ $$2WOS$$aWOS:000406371800019
000836148 0247_ $$2altmetric$$aaltmetric:22696599
000836148 0247_ $$2pmid$$apmid:28746352
000836148 037__ $$aFZJ-2017-05271
000836148 041__ $$aEnglish
000836148 082__ $$a500
000836148 1001_ $$0P:(DE-Juel1)136988$$aGeiger, Alexander$$b0$$eCorresponding author
000836148 245__ $$aEyes versus hands: How perceived stimuli influence motor actions
000836148 260__ $$aLawrence, Kan.$$bPLoS$$c2017
000836148 3367_ $$2DRIVER$$aarticle
000836148 3367_ $$2DataCite$$aOutput Types/Journal article
000836148 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501154409_13925
000836148 3367_ $$2BibTeX$$aARTICLE
000836148 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836148 3367_ $$00$$2EndNote$$aJournal Article
000836148 520__ $$aMany studies showed that biological (e.g., gaze-shifts or hand movements) and non-biological stimuli (e.g., arrows or moving points) redirect attention. Biological stimuli seem to be more suitable than non-biological to perform this task. However, the question remains if biological stimuli do have different influences on redirecting attention and if this property is dependent on how we react to those stimuli. In two separate experiments, participants interact either with a biological or a non-biological stimulus (experiment 1), or with two biological stimuli (gaze-shifts, hand movements)(experiment 2) to which they responded with two different actions (saccade, button press), either in a congruent or incongruent manner. Results from experiment 1 suggest that interacting with the biological stimulus lead to faster responses, compared to the non-biological stimulus, independent of the response type. Results from experiment 2 show longer reaction times when the depicted stimulus was not matching the response type (e.g., reacting with hand movements to a moving object or gaze-shift) compared to a matching condition, while especially the gaze-following condition (reacting with a gaze shift to a perceived gaze shift) led to the fastest responses. These results suggest that redirecting attention is not only dependent on the perceived stimulus but also on the way how those stimuli are responded to.
000836148 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000836148 588__ $$aDataset connected to CrossRef
000836148 7001_ $$0P:(DE-Juel1)156353$$aNiessen, Eva$$b1
000836148 7001_ $$0P:(DE-HGF)0$$aBente, Gary$$b2
000836148 7001_ $$0P:(DE-Juel1)145756$$aVogeley, Kai$$b3
000836148 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0180780$$gVol. 12, no. 7, p. e0180780 -$$n7$$pe0180780 -$$tPLoS one$$v12$$x1932-6203$$y2017
000836148 8564_ $$uhttps://juser.fz-juelich.de/record/836148/files/journal.pone.0180780.pdf$$yOpenAccess
000836148 8767_ $$92017-07-31$$d2017-07-31$$eAPC$$jDeposit$$lDeposit: PLoS$$zUSD 1495
000836148 909CO $$ooai:juser.fz-juelich.de:836148$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000836148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136988$$aForschungszentrum Jülich$$b0$$kFZJ
000836148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156353$$aForschungszentrum Jülich$$b1$$kFZJ
000836148 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)145756$$a INM-3$$b3
000836148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145756$$aForschungszentrum Jülich$$b3$$kFZJ
000836148 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000836148 9141_ $$y2017
000836148 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836148 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000836148 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000836148 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836148 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000836148 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2015
000836148 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000836148 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000836148 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836148 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836148 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836148 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836148 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836148 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836148 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836148 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836148 920__ $$lyes
000836148 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000836148 9801_ $$aFullTexts
000836148 980__ $$ajournal
000836148 980__ $$aVDB
000836148 980__ $$aUNRESTRICTED
000836148 980__ $$aI:(DE-Juel1)INM-3-20090406
000836148 980__ $$aAPC