000836173 001__ 836173
000836173 005__ 20210129230913.0
000836173 0247_ $$2doi$$a10.1093/cercor/bhw355
000836173 0247_ $$2ISSN$$a1047-3211
000836173 0247_ $$2ISSN$$a1460-2199
000836173 0247_ $$2Handle$$a2128/14969
000836173 0247_ $$2WOS$$aWOS:000397064800011
000836173 0247_ $$2altmetric$$aaltmetric:14507134
000836173 0247_ $$2pmid$$apmid:27909009
000836173 037__ $$aFZJ-2017-05296
000836173 041__ $$aEnglish
000836173 082__ $$a610
000836173 1001_ $$0P:(DE-HGF)0$$aKomorowski, A.$$b0
000836173 245__ $$aAssociation of Protein Distribution and GeneExpression Revealed by PET and Post-MortemQuantification in the Serotonergic System of theHuman Brain
000836173 260__ $$aOxford$$bOxford Univ. Press$$c2017
000836173 3367_ $$2DRIVER$$aarticle
000836173 3367_ $$2DataCite$$aOutput Types/Journal article
000836173 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501155720_14926
000836173 3367_ $$2BibTeX$$aARTICLE
000836173 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836173 3367_ $$00$$2EndNote$$aJournal Article
000836173 520__ $$aRegional differences in posttranscriptional mechanisms may influence in vivo protein densities. The association of positron emission tomography (PET) imaging data from 112 healthy controls and gene expression values from the Allen Human Brain Atlas, based on post-mortem brains, was investigated for key serotonergic proteins. PET binding values and gene expression intensities were correlated for the main inhibitory (5-HT1A) and excitatory (5-HT2A) serotonin receptor, the serotonin transporter (SERT) as well as monoamine oxidase-A (MAO-A), using Spearman's correlation coefficients (rs) in a voxel-wise and region-wise analysis. Correlations indicated a strong linear relationship between gene and protein expression for both the 5-HT1A (voxel-wise rs = 0.71; region-wise rs = 0.93) and the 5-HT2A receptor (rs = 0.66; 0.75), but only a weak association for MAO-A (rs = 0.26; 0.66) and no clear correlation for SERT (rs = 0.17; 0.29). Additionally, region-wise correlations were performed using mRNA expression from the HBT, yielding comparable results (5-HT1Ars = 0.82; 5-HT2Ars = 0.88; MAO-A rs = 0.50; SERT rs = −0.01). The SERT and MAO-A appear to be regulated in a region-specific manner across the whole brain. In contrast, the serotonin-1A and -2A receptors are presumably targeted by common posttranscriptional processes similar in all brain areas suggesting the applicability of mRNA expression as surrogate parameter for density of these proteins.
000836173 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000836173 588__ $$aDataset connected to CrossRef
000836173 7001_ $$0P:(DE-HGF)0$$aJames, G. M.$$b1
000836173 7001_ $$0P:(DE-HGF)0$$aPhillipe, C.$$b2
000836173 7001_ $$0P:(DE-HGF)0$$aGryglewski, G.$$b3
000836173 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b4
000836173 7001_ $$0P:(DE-HGF)0$$aHienert, M.$$b5
000836173 7001_ $$0P:(DE-HGF)0$$aSpies, M.$$b6
000836173 7001_ $$0P:(DE-HGF)0$$aKautzky, A.$$b7
000836173 7001_ $$0P:(DE-HGF)0$$aVanicek, T.$$b8
000836173 7001_ $$0P:(DE-HGF)0$$aHahn, A.$$b9
000836173 7001_ $$0P:(DE-HGF)0$$aTraub-Weidinger, T.$$b10
000836173 7001_ $$0P:(DE-HGF)0$$aWinkler, D.$$b11
000836173 7001_ $$0P:(DE-HGF)0$$aWadsak, W.$$b12
000836173 7001_ $$0P:(DE-HGF)0$$aMitterhauser, M.$$b13
000836173 7001_ $$0P:(DE-HGF)0$$aHacker, M.$$b14
000836173 7001_ $$0P:(DE-HGF)0$$aKasper, S.$$b15
000836173 7001_ $$0P:(DE-HGF)0$$aLanzenberger, R.$$b16$$eCorresponding author
000836173 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhw355$$p117-130$$tCerebral cortex$$v27$$x1460-2199$$y2017
000836173 8564_ $$uhttps://juser.fz-juelich.de/record/836173/files/bhw355.pdf$$yOpenAccess
000836173 909CO $$ooai:juser.fz-juelich.de:836173$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000836173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b4$$kFZJ
000836173 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000836173 9141_ $$y2017
000836173 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836173 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000836173 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000836173 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2015
000836173 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836173 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836173 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836173 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836173 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000836173 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2015
000836173 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836173 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000836173 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836173 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836173 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836173 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000836173 980__ $$ajournal
000836173 980__ $$aVDB
000836173 980__ $$aUNRESTRICTED
000836173 980__ $$aI:(DE-Juel1)INM-2-20090406
000836173 9801_ $$aFullTexts