001     836173
005     20210129230913.0
024 7 _ |a 10.1093/cercor/bhw355
|2 doi
024 7 _ |a 1047-3211
|2 ISSN
024 7 _ |a 1460-2199
|2 ISSN
024 7 _ |a 2128/14969
|2 Handle
024 7 _ |a WOS:000397064800011
|2 WOS
024 7 _ |a altmetric:14507134
|2 altmetric
024 7 _ |a pmid:27909009
|2 pmid
037 _ _ |a FZJ-2017-05296
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Komorowski, A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Association of Protein Distribution and GeneExpression Revealed by PET and Post-MortemQuantification in the Serotonergic System of theHuman Brain
260 _ _ |a Oxford
|c 2017
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501155720_14926
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Regional differences in posttranscriptional mechanisms may influence in vivo protein densities. The association of positron emission tomography (PET) imaging data from 112 healthy controls and gene expression values from the Allen Human Brain Atlas, based on post-mortem brains, was investigated for key serotonergic proteins. PET binding values and gene expression intensities were correlated for the main inhibitory (5-HT1A) and excitatory (5-HT2A) serotonin receptor, the serotonin transporter (SERT) as well as monoamine oxidase-A (MAO-A), using Spearman's correlation coefficients (rs) in a voxel-wise and region-wise analysis. Correlations indicated a strong linear relationship between gene and protein expression for both the 5-HT1A (voxel-wise rs = 0.71; region-wise rs = 0.93) and the 5-HT2A receptor (rs = 0.66; 0.75), but only a weak association for MAO-A (rs = 0.26; 0.66) and no clear correlation for SERT (rs = 0.17; 0.29). Additionally, region-wise correlations were performed using mRNA expression from the HBT, yielding comparable results (5-HT1Ars = 0.82; 5-HT2Ars = 0.88; MAO-A rs = 0.50; SERT rs = −0.01). The SERT and MAO-A appear to be regulated in a region-specific manner across the whole brain. In contrast, the serotonin-1A and -2A receptors are presumably targeted by common posttranscriptional processes similar in all brain areas suggesting the applicability of mRNA expression as surrogate parameter for density of these proteins.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a James, G. M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Phillipe, C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gryglewski, G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 4
700 1 _ |a Hienert, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Spies, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kautzky, A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Vanicek, T.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hahn, A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Traub-Weidinger, T.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Winkler, D.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Wadsak, W.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Mitterhauser, M.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Hacker, M.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Kasper, S.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Lanzenberger, R.
|0 P:(DE-HGF)0
|b 16
|e Corresponding author
773 _ _ |a 10.1093/cercor/bhw355
|0 PERI:(DE-600)1483485-6
|p 117-130
|t Cerebral cortex
|v 27
|y 2017
|x 1460-2199
856 4 _ |u https://juser.fz-juelich.de/record/836173/files/bhw355.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:836173
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131672
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CEREB CORTEX : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CEREB CORTEX : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21