000836175 001__ 836175
000836175 005__ 20210129230914.0
000836175 0247_ $$2doi$$a10.1016/j.neuroimage.2017.07.054
000836175 0247_ $$2ISSN$$a1053-8119
000836175 0247_ $$2ISSN$$a1095-9572
000836175 0247_ $$2pmid$$apmid:28756240
000836175 0247_ $$2WOS$$aWOS:000414073100022
000836175 0247_ $$2altmetric$$aaltmetric:22668736
000836175 037__ $$aFZJ-2017-05298
000836175 041__ $$aEnglish
000836175 082__ $$a610
000836175 1001_ $$0P:(DE-Juel1)161286$$aWang, Bin$$b0
000836175 245__ $$aFrequency-specific modulation of connectivity in the ipsilateral sensorimotor cortex by different forms of movement initiation
000836175 260__ $$aOrlando, Fla.$$bAcademic Press$$c2017
000836175 3367_ $$2DRIVER$$aarticle
000836175 3367_ $$2DataCite$$aOutput Types/Journal article
000836175 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502190325_1177
000836175 3367_ $$2BibTeX$$aARTICLE
000836175 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836175 3367_ $$00$$2EndNote$$aJournal Article
000836175 520__ $$aA consistent finding in motor EEG research is a bilateral attenuation of oscillatory activity over sensorimotor regions close to the onset of an upcoming unilateral hand movement. In contrast, little is known about how movement initiation affects oscillatory activity, especially in the hemisphere ipsilateral to the moving hand. We here investigated the neural mechanisms modulating oscillatory activity in the ipsilateral motor cortex prior to movement onset under the control of two different initiating networks, namely, Self-initiated and Visually-cued actions. During motor preparation, a contralateral preponderance of power over sensorimotor cortex (SM) was observed in α and β bands during Visually-cued movements, whereas power changes were more bilateral during Self-initiated movements. Coherence between ipsilateral SM (iSM) and contralateral SM (cSM) in the α-band was significantly increased compared to the respective baseline values, independent of the context of movement initiation. However, this context-independent cSM-iSM coherence modulated the power changes in iSM in a context-dependent manner, that is, a stronger cSM-iSM coherence correlated with a larger decrease in high-β power over iSM in the Self-initiated condition, in contrast to a smaller decrease in α power in the Visually-cued condition. In addition, the context-dependent coherence between SMA and iSM in the α-band and δ-θ-band for the Self-initiated and Visually-cued condition, respectively, exhibited a similar context-dependent modulation for power changes. Our findings suggest that the initiation of regional oscillations over iSM reflects changes in the information flow with the contralateral sensorimotor and premotor areas dependent upon the context of movement initiation. Importantly, the interaction between regional oscillations and network-like oscillatory couplings indicates different frequency-specific inhibitory mechanisms that modulate the activity in the ipsilateral sensorimotor cortex dependent upon how the movement is initiated.
000836175 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000836175 588__ $$aDataset connected to CrossRef
000836175 7001_ $$0P:(DE-Juel1)162395$$aViswanathan, Shivakumar$$b1
000836175 7001_ $$0P:(DE-Juel1)162251$$aAbdollahi, Rouhollah$$b2
000836175 7001_ $$0P:(DE-Juel1)164124$$aRosjat, Nils$$b3
000836175 7001_ $$0P:(DE-Juel1)164123$$aPopovych, Svitlana$$b4
000836175 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b5
000836175 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b6
000836175 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b7$$eCorresponding author
000836175 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2017.07.054$$gp. S1053811917306225$$p248-260$$tNeuroImage$$v159$$x1053-8119$$y2017
000836175 8564_ $$uhttps://juser.fz-juelich.de/record/836175/files/1-s2.0-S1053811917306225-main.pdf$$yRestricted
000836175 8564_ $$uhttps://juser.fz-juelich.de/record/836175/files/1-s2.0-S1053811917306225-main.gif?subformat=icon$$xicon$$yRestricted
000836175 8564_ $$uhttps://juser.fz-juelich.de/record/836175/files/1-s2.0-S1053811917306225-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836175 8564_ $$uhttps://juser.fz-juelich.de/record/836175/files/1-s2.0-S1053811917306225-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836175 8564_ $$uhttps://juser.fz-juelich.de/record/836175/files/1-s2.0-S1053811917306225-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836175 8564_ $$uhttps://juser.fz-juelich.de/record/836175/files/1-s2.0-S1053811917306225-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836175 909CO $$ooai:juser.fz-juelich.de:836175$$pVDB
000836175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161286$$aForschungszentrum Jülich$$b0$$kFZJ
000836175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162395$$aForschungszentrum Jülich$$b1$$kFZJ
000836175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162251$$aForschungszentrum Jülich$$b2$$kFZJ
000836175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164124$$aForschungszentrum Jülich$$b3$$kFZJ
000836175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164123$$aForschungszentrum Jülich$$b4$$kFZJ
000836175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b5$$kFZJ
000836175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b6$$kFZJ
000836175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b7$$kFZJ
000836175 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000836175 9141_ $$y2017
000836175 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836175 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836175 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836175 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836175 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2015
000836175 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836175 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836175 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836175 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836175 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836175 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836175 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000836175 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000836175 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2015
000836175 920__ $$lyes
000836175 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000836175 980__ $$ajournal
000836175 980__ $$aVDB
000836175 980__ $$aI:(DE-Juel1)INM-3-20090406
000836175 980__ $$aUNRESTRICTED