000836177 001__ 836177
000836177 005__ 20250129092359.0
000836177 0247_ $$2doi$$a10.1088/0741-3335/57/8/085006
000836177 0247_ $$2ISSN$$a0032-1028
000836177 0247_ $$2ISSN$$a0368-3281
000836177 0247_ $$2ISSN$$a0741-3335
000836177 0247_ $$2ISSN$$a1361-6587
000836177 0247_ $$2ISSN$$a1879-2979
000836177 0247_ $$2WOS$$aWOS:000359233000006
000836177 037__ $$aFZJ-2017-05300
000836177 041__ $$aEnglish
000836177 082__ $$a530
000836177 1001_ $$0P:(DE-HGF)0$$aGuillemaut, C.$$b0$$eCorresponding author
000836177 245__ $$aIon target impact energy during Type I edge localized modes in JET ITER-like Wall
000836177 260__ $$aBristol$$bIOP Publ.$$c2015
000836177 3367_ $$2DRIVER$$aarticle
000836177 3367_ $$2DataCite$$aOutput Types/Journal article
000836177 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501156868_14926
000836177 3367_ $$2BibTeX$$aARTICLE
000836177 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836177 3367_ $$00$$2EndNote$$aJournal Article
000836177 520__ $$aThe ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode, with ΔW = 0.7 MJ mitigated edge localized modes (ELMs). Tungsten (W) is the material now decided for the divertor plasma-facing components from the start of plasma operations. W atoms sputtered from divertor targets during ELMs are expected to be the dominant source under the partially detached divertor conditions required for safe ITER operation. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of plasma-wall interaction during ELMs is important and a primary input for this is the energy of incoming ions during an ELM event. In this paper, coupled Infrared thermography and Langmuir Probe (LP) measurements in JET-ITER-Like-Wall unseeded H-mode experiments with ITER relevant ELM energy drop have been used to estimate the impact energy of deuterium ions (D+) on the divertor target. This analysis gives an ion energy of several keV during ELMs, which makes D+ responsible for most of the W sputtering in unseeded H-mode discharges. These LP measurements were possible because of the low electron temperature (Te) during ELMs which allowed saturation of the ion current. Although at first sight surprising, the observation of low Te at the divertor target during ELMs is consistent with the 'Free-Streaming' kinetic model which predicts a near-complete transfer of parallel energy from electrons to ions in order to maintain quasi-neutrality of the ELM filaments while they are transported to the divertor targets.
000836177 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000836177 588__ $$aDataset connected to CrossRef
000836177 7001_ $$0P:(DE-HGF)0$$aJardin, A.$$b1
000836177 7001_ $$0P:(DE-HGF)0$$aHoracek, J.$$b2
000836177 7001_ $$0P:(DE-HGF)0$$aAutricque, A.$$b3
000836177 7001_ $$0P:(DE-HGF)0$$aArnoux, G.$$b4
000836177 7001_ $$0P:(DE-Juel1)162349$$aBoom, J.$$b5
000836177 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b6
000836177 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b7$$eCorresponding author
000836177 7001_ $$0P:(DE-HGF)0$$aDe La Luna, E.$$b8
000836177 7001_ $$0P:(DE-HGF)0$$aDevaux, S.$$b9
000836177 7001_ $$0P:(DE-HGF)0$$aEich, T.$$b10
000836177 7001_ $$0P:(DE-HGF)0$$aGiroud, C.$$b11
000836177 7001_ $$0P:(DE-HGF)0$$aHarting, D.$$b12
000836177 7001_ $$0P:(DE-Juel1)2620$$aKirschner, A.$$b13
000836177 7001_ $$0P:(DE-HGF)0$$aLipschultz, B.$$b14
000836177 7001_ $$0P:(DE-HGF)0$$aMatthews, G. F.$$b15
000836177 7001_ $$0P:(DE-HGF)0$$aMoulton, D.$$b16
000836177 7001_ $$0P:(DE-HGF)0$$aO’Mullane, M.$$b17
000836177 7001_ $$0P:(DE-HGF)0$$aStamp, M.$$b18
000836177 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/0741-3335/57/8/085006$$gVol. 57, no. 8, p. 085006 -$$n8$$p085006 $$tPlasma physics and controlled fusion$$v57$$x1361-6587$$y2015
000836177 8564_ $$uhttps://juser.fz-juelich.de/record/836177/files/Guillemaut_2015_Plasma_Phys._Control._Fusion_57_085006.pdf$$yRestricted
000836177 909CO $$ooai:juser.fz-juelich.de:836177$$pVDB
000836177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162349$$aForschungszentrum Jülich$$b5$$kFZJ
000836177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b6$$kFZJ
000836177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b7$$kFZJ
000836177 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b13$$kFZJ
000836177 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000836177 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836177 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000836177 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836177 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA PHYS CONTR F : 2015
000836177 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836177 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836177 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836177 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836177 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836177 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836177 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836177 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836177 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000836177 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x1
000836177 980__ $$ajournal
000836177 980__ $$aVDB
000836177 980__ $$aI:(DE-Juel1)IEK-4-20101013
000836177 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000836177 980__ $$aUNRESTRICTED
000836177 981__ $$aI:(DE-Juel1)PGI-4-20110106
000836177 981__ $$aI:(DE-Juel1)IFN-1-20101013