001     836177
005     20250129092359.0
024 7 _ |a 10.1088/0741-3335/57/8/085006
|2 doi
024 7 _ |a 0032-1028
|2 ISSN
024 7 _ |a 0368-3281
|2 ISSN
024 7 _ |a 0741-3335
|2 ISSN
024 7 _ |a 1361-6587
|2 ISSN
024 7 _ |a 1879-2979
|2 ISSN
024 7 _ |a WOS:000359233000006
|2 WOS
037 _ _ |a FZJ-2017-05300
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Guillemaut, C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Ion target impact energy during Type I edge localized modes in JET ITER-like Wall
260 _ _ |a Bristol
|c 2015
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501156868_14926
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode, with ΔW = 0.7 MJ mitigated edge localized modes (ELMs). Tungsten (W) is the material now decided for the divertor plasma-facing components from the start of plasma operations. W atoms sputtered from divertor targets during ELMs are expected to be the dominant source under the partially detached divertor conditions required for safe ITER operation. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of plasma-wall interaction during ELMs is important and a primary input for this is the energy of incoming ions during an ELM event. In this paper, coupled Infrared thermography and Langmuir Probe (LP) measurements in JET-ITER-Like-Wall unseeded H-mode experiments with ITER relevant ELM energy drop have been used to estimate the impact energy of deuterium ions (D+) on the divertor target. This analysis gives an ion energy of several keV during ELMs, which makes D+ responsible for most of the W sputtering in unseeded H-mode discharges. These LP measurements were possible because of the low electron temperature (Te) during ELMs which allowed saturation of the ion current. Although at first sight surprising, the observation of low Te at the divertor target during ELMs is consistent with the 'Free-Streaming' kinetic model which predicts a near-complete transfer of parallel energy from electrons to ions in order to maintain quasi-neutrality of the ELM filaments while they are transported to the divertor targets.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jardin, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Horacek, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Autricque, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Arnoux, G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Boom, J.
|0 P:(DE-Juel1)162349
|b 5
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 6
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 7
|e Corresponding author
700 1 _ |a De La Luna, E.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Devaux, S.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Eich, T.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Giroud, C.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Harting, D.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kirschner, A.
|0 P:(DE-Juel1)2620
|b 13
700 1 _ |a Lipschultz, B.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Matthews, G. F.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Moulton, D.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a O’Mullane, M.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Stamp, M.
|0 P:(DE-HGF)0
|b 18
773 _ _ |a 10.1088/0741-3335/57/8/085006
|g Vol. 57, no. 8, p. 085006 -
|0 PERI:(DE-600)1473144-7
|n 8
|p 085006
|t Plasma physics and controlled fusion
|v 57
|y 2015
|x 1361-6587
856 4 _ |u https://juser.fz-juelich.de/record/836177/files/Guillemaut_2015_Plasma_Phys._Control._Fusion_57_085006.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836177
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162349
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)2620
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLASMA PHYS CONTR F : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21