001     836204
005     20240712101004.0
024 7 _ |a 10.5194/amt-2017-231
|2 doi
024 7 _ |a 2128/15038
|2 Handle
037 _ _ |a FZJ-2017-05325
082 _ _ |a 550
100 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 0
|e Corresponding author
245 _ _ |a Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR
260 _ _ |a Katlenburg-Lindau
|c 2017
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501577931_13619
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hydroxyl (OH) radical reactivity (kOH) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements took part in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapor, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection < 1 s−1 at a time resolution of 30 seconds to a few minutes) is higher for instruments directly detecting hydroxyl radicals, whereas the indirect Comparative Reactivity Method (CRM) has a higher limit of detection of 2 s−1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapor or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected in the chamber to simulate urban and forested environments. Overall, the results show that instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds (mixing ratio of OH reactants were up to 10 ppbv). In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied in order to account for known effects of, for example, deviations from pseudo-first order conditions, nitrogen oxides or water vapor on the measurement. Methods to derive these corrections vary among the different CRM instruments. Measurements by a flow-tube instrument combined with the direct detection of OH by chemical ionization mass spectrometry (CIMS) show limitations in cases of high reactivity and high NO concentrations, but were accurate for low reactivity (< 15 s−1) and low NO (< 5 ppbv) conditions.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Novelli, Anna
|0 P:(DE-Juel1)166537
|b 1
700 1 _ |a Rolletter, Michael
|0 P:(DE-Juel1)166277
|b 2
|u fzj
700 1 _ |a Hofzumahaus, Andreas
|0 P:(DE-Juel1)16326
|b 3
700 1 _ |a Pfannerstill, Eva Y.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kessel, Stephan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Edtbauer, Achim
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Williams, Jonathan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Michoud, Vincent
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dusanter, Sebastien
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Locoge, Nadine
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Zannoni, Nora
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gros, Valerie
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Truong, Francois
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Sarda-Esteve, Roland
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Cryer, Danny R.
|0 0000-0002-0828-4218
|b 15
700 1 _ |a Brumby, Charlotte A.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Whalley, Lisa K.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Stone, Daniel
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Seakins, Paul W.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Heard, Dwayne E.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Schoemaecker, Coralie
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Blocquet, Marion
|0 P:(DE-Juel1)170025
|b 22
|u fzj
700 1 _ |a Coudert, Sebastien
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Batut, Sebastien
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Fittschen, Christa
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Thames, Alexander B.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Brune, William H.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Ernest, Cheryl
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Harder, Hartwig
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Muller, Jenifer B. A.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Elste, Thomas
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Kubistin, Dagmar
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Andres, Stefanie
|0 P:(DE-Juel1)6627
|b 33
|u fzj
700 1 _ |a Bohn, Birger
|0 P:(DE-Juel1)2693
|b 34
|u fzj
700 1 _ |a Hohaus, Thorsten
|0 P:(DE-Juel1)161442
|b 35
|u fzj
700 1 _ |a Holland, Frank
|0 P:(DE-Juel1)16342
|b 36
|u fzj
700 1 _ |a Li, Xin
|0 P:(DE-Juel1)6775
|b 37
|u fzj
700 1 _ |a Rohrer, Franz
|0 P:(DE-Juel1)16347
|b 38
|u fzj
700 1 _ |a Kiendler-Scharr, Astrid
|0 P:(DE-Juel1)4528
|b 39
|u fzj
700 1 _ |a Tillmann, Ralf
|0 P:(DE-Juel1)5344
|b 40
|u fzj
700 1 _ |a Wegener, Robert
|0 P:(DE-Juel1)2367
|b 41
|u fzj
700 1 _ |a Yu, Zhujun
|0 P:(DE-Juel1)159354
|b 42
|u fzj
700 1 _ |a Zou, Qi
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 44
773 _ _ |a 10.5194/amt-2017-231
|g p. 1 - 56
|0 PERI:(DE-600)2507817-3
|p 1 - 56
|t Atmospheric measurement techniques discussions
|v 231
|y 2017
|x 1867-8610
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/836204/files/amt-2017-231.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/836204/files/amt-2017-231.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/836204/files/amt-2017-231.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/836204/files/amt-2017-231.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/836204/files/amt-2017-231.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/836204/files/amt-2017-231.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:836204
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166537
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166277
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)16326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)170025
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 33
|6 P:(DE-Juel1)6627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 34
|6 P:(DE-Juel1)2693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 35
|6 P:(DE-Juel1)161442
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 36
|6 P:(DE-Juel1)16342
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 37
|6 P:(DE-Juel1)6775
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 38
|6 P:(DE-Juel1)16347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 39
|6 P:(DE-Juel1)4528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 40
|6 P:(DE-Juel1)5344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 41
|6 P:(DE-Juel1)2367
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 42
|6 P:(DE-Juel1)159354
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 44
|6 P:(DE-Juel1)16324
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21