000836224 001__ 836224
000836224 005__ 20240711113531.0
000836224 0247_ $$2doi$$a10.1016/j.ijrmhm.2017.06.001
000836224 0247_ $$2ISSN$$a0263-4368
000836224 0247_ $$2ISSN$$a0958-0611
000836224 0247_ $$2WOS$$aWOS:000410014600005
000836224 037__ $$aFZJ-2017-05345
000836224 041__ $$aEnglish
000836224 082__ $$a670
000836224 1001_ $$0P:(DE-HGF)0$$aZhao, P.$$b0
000836224 245__ $$aMicrostructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments
000836224 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000836224 3367_ $$2DRIVER$$aarticle
000836224 3367_ $$2DataCite$$aOutput Types/Journal article
000836224 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501236187_2675
000836224 3367_ $$2BibTeX$$aARTICLE
000836224 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836224 3367_ $$00$$2EndNote$$aJournal Article
000836224 520__ $$aPlastic deformation of tungsten wire is an effective source of toughening tungsten fibre-reinforced tungsten composites (Wf/W) and other tungsten fibre-reinforced composites. To provide a reference for optimization of those composites, unconstrained pure tungsten wire is studied after various heat treatments in terms of microstructure, mechanical behaviour and fracture mode. Recrystallization is already observed at a relatively low temperature of 1273 K due to the large driving force caused by a high dislocation density. Annealing for 30 min at 1900 K also leads to recrystallization, but causes a rather different microstructure. As-fabricated wire and wire recrystallized at 1273 K for 3 h show fine grains with a high aspect ratio and a substantial plastic deformability: a clearly defined tensile strength, high plastic work, similar necking shape, and the characteristic knife-edge-necking of individual grains on the fracture surface. While the wire recrystallized at 1900 K displays large, almost equiaxed grains with low aspect ratios as well as distinct brittle properties. Therefore, it is suggested that a high aspect ratio of the grains is important for the ductile behaviour of tungsten wire and that embrittlement is caused by the loss of the preferable elongated grain structure rather than by recrystallization. In addition, a detailed evaluation of the plastic deformation behaviour during tensile test gives guidance to the design and optimization of tungsten fibre-reinforced composites.
000836224 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000836224 588__ $$aDataset connected to CrossRef
000836224 7001_ $$0P:(DE-HGF)0$$aRiesch, J.$$b1
000836224 7001_ $$0P:(DE-HGF)0$$aHöschen, T.$$b2
000836224 7001_ $$0P:(DE-HGF)0$$aAlmanstötter, J.$$b3
000836224 7001_ $$0P:(DE-HGF)0$$aBalden, M.$$b4
000836224 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b5$$eCorresponding author$$ufzj
000836224 7001_ $$0P:(DE-HGF)0$$aHimml, R.$$b6
000836224 7001_ $$0P:(DE-HGF)0$$aPantleon, W.$$b7
000836224 7001_ $$0P:(DE-HGF)0$$avon Toussaint, U.$$b8
000836224 7001_ $$0P:(DE-HGF)0$$aNeu, R.$$b9
000836224 773__ $$0PERI:(DE-600)2015219-X$$a10.1016/j.ijrmhm.2017.06.001$$gVol. 68, p. 29 - 40$$p29 - 40$$tInternational journal of refractory metals & hard materials$$v68$$x0263-4368$$y2017
000836224 8564_ $$uhttps://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.pdf$$yRestricted
000836224 8564_ $$uhttps://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.gif?subformat=icon$$xicon$$yRestricted
000836224 8564_ $$uhttps://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836224 8564_ $$uhttps://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836224 8564_ $$uhttps://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836224 8564_ $$uhttps://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836224 909CO $$ooai:juser.fz-juelich.de:836224$$pVDB
000836224 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b5$$kFZJ
000836224 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000836224 9141_ $$y2017
000836224 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J REFRACT MET H : 2015
000836224 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836224 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836224 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836224 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836224 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836224 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836224 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836224 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000836224 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836224 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836224 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000836224 980__ $$ajournal
000836224 980__ $$aVDB
000836224 980__ $$aI:(DE-Juel1)IEK-4-20101013
000836224 980__ $$aUNRESTRICTED
000836224 981__ $$aI:(DE-Juel1)IFN-1-20101013