001     836224
005     20240711113531.0
024 7 _ |a 10.1016/j.ijrmhm.2017.06.001
|2 doi
024 7 _ |a 0263-4368
|2 ISSN
024 7 _ |a 0958-0611
|2 ISSN
024 7 _ |a WOS:000410014600005
|2 WOS
037 _ _ |a FZJ-2017-05345
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Zhao, P.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501236187_2675
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plastic deformation of tungsten wire is an effective source of toughening tungsten fibre-reinforced tungsten composites (Wf/W) and other tungsten fibre-reinforced composites. To provide a reference for optimization of those composites, unconstrained pure tungsten wire is studied after various heat treatments in terms of microstructure, mechanical behaviour and fracture mode. Recrystallization is already observed at a relatively low temperature of 1273 K due to the large driving force caused by a high dislocation density. Annealing for 30 min at 1900 K also leads to recrystallization, but causes a rather different microstructure. As-fabricated wire and wire recrystallized at 1273 K for 3 h show fine grains with a high aspect ratio and a substantial plastic deformability: a clearly defined tensile strength, high plastic work, similar necking shape, and the characteristic knife-edge-necking of individual grains on the fracture surface. While the wire recrystallized at 1900 K displays large, almost equiaxed grains with low aspect ratios as well as distinct brittle properties. Therefore, it is suggested that a high aspect ratio of the grains is important for the ductile behaviour of tungsten wire and that embrittlement is caused by the loss of the preferable elongated grain structure rather than by recrystallization. In addition, a detailed evaluation of the plastic deformation behaviour during tensile test gives guidance to the design and optimization of tungsten fibre-reinforced composites.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Riesch, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Höschen, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Almanstötter, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Balden, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Himml, R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pantleon, W.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a von Toussaint, U.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Neu, R.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1016/j.ijrmhm.2017.06.001
|g Vol. 68, p. 29 - 40
|0 PERI:(DE-600)2015219-X
|p 29 - 40
|t International journal of refractory metals & hard materials
|v 68
|y 2017
|x 0263-4368
856 4 _ |u https://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836224/files/1-s2.0-S026343681730183X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836224
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)2594
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J REFRACT MET H : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21