000836226 001__ 836226 000836226 005__ 20240711113531.0 000836226 0247_ $$2doi$$a10.1088/1741-4326/aa687e 000836226 0247_ $$2ISSN$$a0029-5515 000836226 0247_ $$2ISSN$$a1741-4326 000836226 0247_ $$2WOS$$aWOS:000399433800001 000836226 0247_ $$2altmetric$$aaltmetric:18789344 000836226 037__ $$aFZJ-2017-05347 000836226 041__ $$aEnglish 000836226 082__ $$a530 000836226 1001_ $$0P:(DE-HGF)0$$aCorre, Y.$$b0$$eCorresponding author 000836226 245__ $$aThermal analysis of protruding surfaces in the JET divertor 000836226 260__ $$aVienna$$bIAEA$$c2017 000836226 3367_ $$2DRIVER$$aarticle 000836226 3367_ $$2DataCite$$aOutput Types/Journal article 000836226 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501236895_2364 000836226 3367_ $$2BibTeX$$aARTICLE 000836226 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000836226 3367_ $$00$$2EndNote$$aJournal Article 000836226 520__ $$aTungsten (W) melting is a major concern for next step fusion devices. Two ELM induced tungsten melting experiments have been performed in JET by introducing two special target plate lamellae designed to receive excessively high ELM transient power loads. The first experiment was performed in JET in 2013 using a special lamella with a sharp leading edge gradually varying from h = 0.25 mm to 2.5 mm in order to maximise the temperature rise by exposure to the full parallel heat flux. ELM-induced transient melting has been successively achieved allowing investigation of the melt motion. However, using the available IR viewing geometry from the top, it was not possible to directly discriminate between the top and leading edge power loads. To improve the experimental validation of heat load and melt motion modelling codes, a new protruding W lamella with a 15° slope facing the toroidal direction has been installed for the 2015–16 campaigns, allowing direct, spatially resolved observation of the top surface and reduced sensitivity of the analysis to the surface incidence angle of the magnetic field. This paper reports on the results of these more recent experiments, with specific focus on IR data analysis and heat flux calculations during L-mode discharges in order to investigate the behaviour of the W lamella with steady state heat load, which is a prerequisite for the more complex ELMing H-mode discharges (including both, steady and transient heat loads). It shows that, at least in L-mode, the assumption of optical heat flux projection is justified. 000836226 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0 000836226 588__ $$aDataset connected to CrossRef 000836226 7001_ $$0P:(DE-HGF)0$$aBunting, P.$$b1 000836226 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b2 000836226 7001_ $$0P:(DE-HGF)0$$aGaspar, J.$$b3 000836226 7001_ $$0P:(DE-HGF)0$$aIglesias, D.$$b4 000836226 7001_ $$0P:(DE-HGF)0$$aMatthews, G. F.$$b5 000836226 7001_ $$0P:(DE-HGF)0$$aBalboa, I.$$b6 000836226 7001_ $$0P:(DE-HGF)0$$aCoffey, I.$$b7 000836226 7001_ $$0P:(DE-HGF)0$$aDejarnac, R.$$b8 000836226 7001_ $$0P:(DE-HGF)0$$aFirdaouss, M.$$b9 000836226 7001_ $$0P:(DE-HGF)0$$aGauthier, E.$$b10 000836226 7001_ $$0P:(DE-Juel1)130043$$aJachmich, S.$$b11 000836226 7001_ $$0P:(DE-HGF)0$$aKrieger, K.$$b12 000836226 7001_ $$0P:(DE-HGF)0$$aPitts, R. A.$$b13 000836226 7001_ $$0P:(DE-Juel1)145407$$aRack, M.$$b14 000836226 7001_ $$0P:(DE-HGF)0$$aSilburn, S. A.$$b15 000836226 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aa687e$$gVol. 57, no. 6, p. 066009 -$$n6$$p066009 -$$tNuclear fusion$$v57$$x1741-4326$$y2017 000836226 8564_ $$uhttps://juser.fz-juelich.de/record/836226/files/Corre_2017_Nucl._Fusion_57_066009.pdf$$yRestricted 000836226 8564_ $$uhttps://juser.fz-juelich.de/record/836226/files/Corre_2017_Nucl._Fusion_57_066009.pdf?subformat=pdfa$$xpdfa$$yRestricted 000836226 909CO $$ooai:juser.fz-juelich.de:836226$$pVDB 000836226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b2$$kFZJ 000836226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130043$$aForschungszentrum Jülich$$b11$$kFZJ 000836226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145407$$aForschungszentrum Jülich$$b14$$kFZJ 000836226 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0 000836226 9141_ $$y2017 000836226 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000836226 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000836226 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015 000836226 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000836226 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000836226 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000836226 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000836226 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000836226 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000836226 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000836226 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000836226 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000836226 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000836226 980__ $$ajournal 000836226 980__ $$aVDB 000836226 980__ $$aI:(DE-Juel1)IEK-4-20101013 000836226 980__ $$aUNRESTRICTED 000836226 981__ $$aI:(DE-Juel1)IFN-1-20101013