000836226 001__ 836226
000836226 005__ 20240711113531.0
000836226 0247_ $$2doi$$a10.1088/1741-4326/aa687e
000836226 0247_ $$2ISSN$$a0029-5515
000836226 0247_ $$2ISSN$$a1741-4326
000836226 0247_ $$2WOS$$aWOS:000399433800001
000836226 0247_ $$2altmetric$$aaltmetric:18789344
000836226 037__ $$aFZJ-2017-05347
000836226 041__ $$aEnglish
000836226 082__ $$a530
000836226 1001_ $$0P:(DE-HGF)0$$aCorre, Y.$$b0$$eCorresponding author
000836226 245__ $$aThermal analysis of protruding surfaces in the JET divertor
000836226 260__ $$aVienna$$bIAEA$$c2017
000836226 3367_ $$2DRIVER$$aarticle
000836226 3367_ $$2DataCite$$aOutput Types/Journal article
000836226 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501236895_2364
000836226 3367_ $$2BibTeX$$aARTICLE
000836226 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836226 3367_ $$00$$2EndNote$$aJournal Article
000836226 520__ $$aTungsten (W) melting is a major concern for next step fusion devices. Two ELM induced tungsten melting experiments have been performed in JET by introducing two special target plate lamellae designed to receive excessively high ELM transient power loads. The first experiment was performed in JET in 2013 using a special lamella with a sharp leading edge gradually varying from h  =  0.25 mm to 2.5 mm in order to maximise the temperature rise by exposure to the full parallel heat flux. ELM-induced transient melting has been successively achieved allowing investigation of the melt motion. However, using the available IR viewing geometry from the top, it was not possible to directly discriminate between the top and leading edge power loads. To improve the experimental validation of heat load and melt motion modelling codes, a new protruding W lamella with a 15° slope facing the toroidal direction has been installed for the 2015–16 campaigns, allowing direct, spatially resolved observation of the top surface and reduced sensitivity of the analysis to the surface incidence angle of the magnetic field. This paper reports on the results of these more recent experiments, with specific focus on IR data analysis and heat flux calculations during L-mode discharges in order to investigate the behaviour of the W lamella with steady state heat load, which is a prerequisite for the more complex ELMing H-mode discharges (including both, steady and transient heat loads). It shows that, at least in L-mode, the assumption of optical heat flux projection is justified.
000836226 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000836226 588__ $$aDataset connected to CrossRef
000836226 7001_ $$0P:(DE-HGF)0$$aBunting, P.$$b1
000836226 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b2
000836226 7001_ $$0P:(DE-HGF)0$$aGaspar, J.$$b3
000836226 7001_ $$0P:(DE-HGF)0$$aIglesias, D.$$b4
000836226 7001_ $$0P:(DE-HGF)0$$aMatthews, G. F.$$b5
000836226 7001_ $$0P:(DE-HGF)0$$aBalboa, I.$$b6
000836226 7001_ $$0P:(DE-HGF)0$$aCoffey, I.$$b7
000836226 7001_ $$0P:(DE-HGF)0$$aDejarnac, R.$$b8
000836226 7001_ $$0P:(DE-HGF)0$$aFirdaouss, M.$$b9
000836226 7001_ $$0P:(DE-HGF)0$$aGauthier, E.$$b10
000836226 7001_ $$0P:(DE-Juel1)130043$$aJachmich, S.$$b11
000836226 7001_ $$0P:(DE-HGF)0$$aKrieger, K.$$b12
000836226 7001_ $$0P:(DE-HGF)0$$aPitts, R. A.$$b13
000836226 7001_ $$0P:(DE-Juel1)145407$$aRack, M.$$b14
000836226 7001_ $$0P:(DE-HGF)0$$aSilburn, S. A.$$b15
000836226 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aa687e$$gVol. 57, no. 6, p. 066009 -$$n6$$p066009 -$$tNuclear fusion$$v57$$x1741-4326$$y2017
000836226 8564_ $$uhttps://juser.fz-juelich.de/record/836226/files/Corre_2017_Nucl._Fusion_57_066009.pdf$$yRestricted
000836226 8564_ $$uhttps://juser.fz-juelich.de/record/836226/files/Corre_2017_Nucl._Fusion_57_066009.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836226 909CO $$ooai:juser.fz-juelich.de:836226$$pVDB
000836226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b2$$kFZJ
000836226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130043$$aForschungszentrum Jülich$$b11$$kFZJ
000836226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145407$$aForschungszentrum Jülich$$b14$$kFZJ
000836226 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000836226 9141_ $$y2017
000836226 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836226 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000836226 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015
000836226 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836226 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836226 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836226 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836226 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836226 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836226 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836226 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836226 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836226 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000836226 980__ $$ajournal
000836226 980__ $$aVDB
000836226 980__ $$aI:(DE-Juel1)IEK-4-20101013
000836226 980__ $$aUNRESTRICTED
000836226 981__ $$aI:(DE-Juel1)IFN-1-20101013