001     836226
005     20240711113531.0
024 7 _ |a 10.1088/1741-4326/aa687e
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000399433800001
|2 WOS
024 7 _ |a altmetric:18789344
|2 altmetric
037 _ _ |a FZJ-2017-05347
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Corre, Y.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Thermal analysis of protruding surfaces in the JET divertor
260 _ _ |a Vienna
|c 2017
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501236895_2364
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tungsten (W) melting is a major concern for next step fusion devices. Two ELM induced tungsten melting experiments have been performed in JET by introducing two special target plate lamellae designed to receive excessively high ELM transient power loads. The first experiment was performed in JET in 2013 using a special lamella with a sharp leading edge gradually varying from h  =  0.25 mm to 2.5 mm in order to maximise the temperature rise by exposure to the full parallel heat flux. ELM-induced transient melting has been successively achieved allowing investigation of the melt motion. However, using the available IR viewing geometry from the top, it was not possible to directly discriminate between the top and leading edge power loads. To improve the experimental validation of heat load and melt motion modelling codes, a new protruding W lamella with a 15° slope facing the toroidal direction has been installed for the 2015–16 campaigns, allowing direct, spatially resolved observation of the top surface and reduced sensitivity of the analysis to the surface incidence angle of the magnetic field. This paper reports on the results of these more recent experiments, with specific focus on IR data analysis and heat flux calculations during L-mode discharges in order to investigate the behaviour of the W lamella with steady state heat load, which is a prerequisite for the more complex ELMing H-mode discharges (including both, steady and transient heat loads). It shows that, at least in L-mode, the assumption of optical heat flux projection is justified.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bunting, P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Coenen, J. W.
|0 P:(DE-Juel1)2594
|b 2
700 1 _ |a Gaspar, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Iglesias, D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Matthews, G. F.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Balboa, I.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Coffey, I.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Dejarnac, R.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Firdaouss, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gauthier, E.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Jachmich, S.
|0 P:(DE-Juel1)130043
|b 11
700 1 _ |a Krieger, K.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Pitts, R. A.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Rack, M.
|0 P:(DE-Juel1)145407
|b 14
700 1 _ |a Silburn, S. A.
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1088/1741-4326/aa687e
|g Vol. 57, no. 6, p. 066009 -
|0 PERI:(DE-600)2037980-8
|n 6
|p 066009 -
|t Nuclear fusion
|v 57
|y 2017
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/836226/files/Corre_2017_Nucl._Fusion_57_066009.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836226/files/Corre_2017_Nucl._Fusion_57_066009.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836226
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130043
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)145407
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21