000836235 001__ 836235
000836235 005__ 20240711113532.0
000836235 0247_ $$2doi$$a10.1016/j.fusengdes.2016.02.102
000836235 0247_ $$2ISSN$$a0920-3796
000836235 0247_ $$2ISSN$$a1873-7196
000836235 0247_ $$2WOS$$aWOS:000382421900060
000836235 037__ $$aFZJ-2017-05356
000836235 082__ $$a620
000836235 1001_ $$0P:(DE-HGF)0$$aIvanova-Stanik, I.$$b0$$eCorresponding author
000836235 245__ $$aInfluence of impurity seeding on plasma burning scenarios for ITER
000836235 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000836235 3367_ $$2DRIVER$$aarticle
000836235 3367_ $$2DataCite$$aOutput Types/Journal article
000836235 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501251897_2052
000836235 3367_ $$2BibTeX$$aARTICLE
000836235 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836235 3367_ $$00$$2EndNote$$aJournal Article
000836235 520__ $$aITER expects to produce fusion power of about 0.5GW when operating with tungsten (W) divertor and beryllium (Be) wall. The influx of W from divertor can have significant influence on the discharge performance. This work describes predictive integrated numerical modeling of ITER discharges using the COREDIV code, which self-consistently solves the 1D radial energy and particle transport in the core region and 2D multi-fluid transport in the SOL. Calculations are performed for inductive ITER scenarios with intrinsic (W, Be and He) impurities and with seeded impurities (Ne and Ar) for different particle and heat transport in the core and different radial transport in the SOL. Simulations show, that only for sufficiently high radial diffusion (both in the core and in the SOL regions), it is possible to achieve H-mode mode plasma operation (power to SOL > L-H threshold power) with acceptable low level of power reaching the divertor plates. For argon seeding, the operational window is much smaller than for neon case due to enhanced core radiation (in comparison to Ne). Particle transport in the core characterized by the ratio of particle diffusion to thermal conductivity) has strong influence on the predicted ITER performance.
000836235 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000836235 588__ $$aDataset connected to CrossRef
000836235 7001_ $$0P:(DE-HGF)0$$aZagórski, R.$$b1
000836235 7001_ $$0P:(DE-HGF)0$$aVoitsekhovitch, I.$$b2
000836235 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, Sebastijan$$b3
000836235 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2016.02.102$$gVol. 109-111, p. 342 - 346$$p342 - 346$$tFusion engineering and design$$v109-111$$x0920-3796$$y2016
000836235 8564_ $$uhttps://juser.fz-juelich.de/record/836235/files/1-s2.0-S0920379616301946-main.pdf$$yRestricted
000836235 8564_ $$uhttps://juser.fz-juelich.de/record/836235/files/1-s2.0-S0920379616301946-main.gif?subformat=icon$$xicon$$yRestricted
000836235 8564_ $$uhttps://juser.fz-juelich.de/record/836235/files/1-s2.0-S0920379616301946-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836235 8564_ $$uhttps://juser.fz-juelich.de/record/836235/files/1-s2.0-S0920379616301946-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836235 8564_ $$uhttps://juser.fz-juelich.de/record/836235/files/1-s2.0-S0920379616301946-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836235 8564_ $$uhttps://juser.fz-juelich.de/record/836235/files/1-s2.0-S0920379616301946-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836235 909CO $$ooai:juser.fz-juelich.de:836235$$pVDB
000836235 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b3$$kFZJ
000836235 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000836235 9141_ $$y2017
000836235 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836235 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2015
000836235 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836235 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836235 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836235 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836235 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836235 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836235 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836235 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000836235 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836235 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000836235 980__ $$ajournal
000836235 980__ $$aVDB
000836235 980__ $$aI:(DE-Juel1)IEK-4-20101013
000836235 980__ $$aUNRESTRICTED
000836235 981__ $$aI:(DE-Juel1)IFN-1-20101013