000008364 001__ 8364
000008364 005__ 20200423202642.0
000008364 0247_ $$2pmid$$apmid:19930129
000008364 0247_ $$2DOI$$a10.1111/j.1365-3040.2009.02079.x
000008364 0247_ $$2WOS$$aWOS:000273551100010
000008364 037__ $$aPreJuSER-8364
000008364 041__ $$aeng
000008364 082__ $$a570
000008364 084__ $$2WoS$$aPlant Sciences
000008364 1001_ $$0P:(DE-Juel1)VDB67249$$aThorpe, M.R.$$b0$$uFZJ
000008364 245__ $$aRapid cooling triggers forisome dispersion just before phloem transport stops
000008364 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2010
000008364 300__ $$a259 - 271
000008364 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000008364 3367_ $$2DataCite$$aOutput Types/Journal article
000008364 3367_ $$00$$2EndNote$$aJournal Article
000008364 3367_ $$2BibTeX$$aARTICLE
000008364 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000008364 3367_ $$2DRIVER$$aarticle
000008364 440_0 $$04976$$aPlant, Cell and Environment$$v33$$x0140-7791$$y2
000008364 500__ $$aWe were supported by the Deutsche Forschungsgemeinschaft in the frame of the Schwerpunktprogramm 1108 (BE 1925/8-2, 8-3, 15-1) and by the Marsden Fund of New Zealand (Contract Number UOW003). We acknowledge Gerhard Roeb, Siegfried Jahnke and Marco Dautzenberg for discussions and technical assistance in Julich, and Werner Uhmann, Thomas Wagner, Andreas Reh and Stefan Balser in Giessen for expert workshop assistance in Giessen.
000008364 520__ $$aPhloem transport stops transiently within dicot stems that are cooled rapidly, but the cause remains unknown. Now it is known that (1) rapid cooling depolarizes cell membranes giving a transient increase in cytoplasmic Ca(2+), and (2) a rise of free calcium triggers dispersion of forisomes, which then occlude sieve elements (SEs) of fabacean plants. Therefore, we compared the effects of rapid chilling on SE electrophysiology, phloem transport and forisomes in Vicia faba. Forisomes dispersed after rapid cooling with a delay that was longer for slower cooling rates. Phloem transport stopped about 20 s after forisome dispersion, and then transport resumed and forisomes re-condensed within similar time frames. Transport interruption and forisome dispersion showed parallel behaviour--a cooling rate-dependent response, transience and desensitization. Chilling induced both a fast and a slow depolarization of SE membranes, the electrical signature suggesting strongly that the cause of forisome dispersion was the transient promotion of SE free calcium. This apparent block of SEs by dispersed forisomes may be assisted by other Ca(2+)-dependent sealing proteins that are present in all dicots.
000008364 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000008364 588__ $$aDataset connected to Web of Science, Pubmed
000008364 65320 $$2Author$$a11C
000008364 65320 $$2Author$$aburning
000008364 65320 $$2Author$$aC-11
000008364 65320 $$2Author$$acarbon-11
000008364 65320 $$2Author$$achill
000008364 65320 $$2Author$$acold
000008364 65320 $$2Author$$acooling
000008364 65320 $$2Author$$atransport blockage
000008364 650_2 $$2MeSH$$aCalcium: metabolism
000008364 650_2 $$2MeSH$$aCarbon Isotopes: analysis
000008364 650_2 $$2MeSH$$aCold Temperature
000008364 650_2 $$2MeSH$$aElectrophysiology
000008364 650_2 $$2MeSH$$aFluorescent Dyes
000008364 650_2 $$2MeSH$$aMembrane Potentials
000008364 650_2 $$2MeSH$$aMicroelectrodes
000008364 650_2 $$2MeSH$$aMicroscopy, Confocal
000008364 650_2 $$2MeSH$$aPhloem: physiology
000008364 650_2 $$2MeSH$$aVicia faba: physiology
000008364 650_7 $$00$$2NLM Chemicals$$aCarbon Isotopes
000008364 650_7 $$00$$2NLM Chemicals$$aFluorescent Dyes
000008364 650_7 $$07440-70-2$$2NLM Chemicals$$aCalcium
000008364 650_7 $$2WoSType$$aJ
000008364 7001_ $$0P:(DE-HGF)0$$aFurch, A.C.U.$$b1
000008364 7001_ $$0P:(DE-HGF)0$$aMinchin, P.E.H.$$b2
000008364 7001_ $$0P:(DE-HGF)0$$aFöller, J.$$b3
000008364 7001_ $$0P:(DE-HGF)0$$aVan Bel, A.J.E.$$b4
000008364 7001_ $$0P:(DE-HGF)0$$aHafke, J.B.$$b5
000008364 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/j.1365-3040.2009.02079.x$$gVol. 33, p. 259 - 271$$p259 - 271$$q33<259 - 271$$tPlant, cell & environment$$v33$$x0140-7791$$y2010
000008364 8567_ $$uhttp://dx.doi.org/10.1111/j.1365-3040.2009.02079.x
000008364 8564_ $$uhttps://juser.fz-juelich.de/record/8364/files/FZJ-8364.pdf$$yRestricted$$zPublished final document.
000008364 909CO $$ooai:juser.fz-juelich.de:8364$$pVDB
000008364 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000008364 9141_ $$y2010
000008364 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000008364 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000008364 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000008364 970__ $$aVDB:(DE-Juel1)117283
000008364 980__ $$aVDB
000008364 980__ $$aConvertedRecord
000008364 980__ $$ajournal
000008364 980__ $$aI:(DE-Juel1)IBG-2-20101118
000008364 980__ $$aUNRESTRICTED
000008364 981__ $$aI:(DE-Juel1)IBG-2-20101118
000008364 981__ $$aI:(DE-Juel1)ICG-3-20090406