000836421 001__ 836421
000836421 005__ 20240708132810.0
000836421 037__ $$aFZJ-2017-05542
000836421 1001_ $$0P:(DE-Juel1)165868$$aGrünwald, Nikolas$$b0$$eCorresponding author$$ufzj
000836421 1112_ $$a15th Conference & Exhibition of the European Ceramic Society$$cBudapest$$d2017-07-09 - 2017-07-13$$gECerS 2017$$wHungary
000836421 245__ $$aMICROSTRUCTURAL AND PHASE EVOLUTION OF ATMOSPHERIC PLASMA SPRAYED MANGANESE COBALT IRON OXIDE PROTECTION LAYERS IN SOLID OXIDE FUEL CELLS
000836421 260__ $$c2017
000836421 3367_ $$033$$2EndNote$$aConference Paper
000836421 3367_ $$2DataCite$$aOther
000836421 3367_ $$2BibTeX$$aINPROCEEDINGS
000836421 3367_ $$2DRIVER$$aconferenceObject
000836421 3367_ $$2ORCID$$aLECTURE_SPEECH
000836421 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1501590893_13627$$xAfter Call
000836421 520__ $$aChromium containing steels are widely used as interconnects in solid oxide fuel cell stacks (SOFCs) because of their advantageous mechanical and electrical properties. The major drawback of this material is the evaporation of chromium containing species at the high SOFC operation temperatures, which lead to a strong degradation of commonly used cathode materials. Covering the interconnect’s surface with a protection layer enables a strong reduction of the chromium related degradation. The use of dense layers of atmospherically plasma sprayed (APS) Mn1,0Co1,9Fe0,1O4 (MCF) showed remarkably low degradation rates within operated stacks in Jülich. Although the stacks show good performance, the APS-MCF layers undergo strong changes that are just partially described in literature [1,2], but not fully understood yet. This study analyses the microstructural evolution and phase changes of APS-MCF layers within samples tested for annealing times of up to 10.000 hours and also within components of test stacks operated at JÜLICH. A crack healing effect is observed by annealing in air at low temperature of 500°C. Measurements with X-ray diffraction, wet chemical analyses and thermo gravimetry support a theory describing this effect by a volume expansion that is induced by an oxidation process of the plasma sprayed MCF. Air leakage measurements reveal a strong increase of gas-tightness providing increased chromium retention. Annealing at higher temperatures of 700°C to 850°C leads to a segregation and a phase separation observed in electron microscopic images. Oxidation driven diffusion of Cobalt ions to the layer’s surface build up a dense Co3O4 layer in a spinel crystal structure. This layer decelerates further oxidation of the coatings bulk. Combining these results with the performed long-term annealing tests can provide lifetime predictions of APS-MCF protective layers. Thereby a reduction of the cathode related degradation can be achieved.References[1]	R. Vaßen, N. Grünwald, D. Marcano, N.H. Menzler, R. Mücke, D. Sebold, Y.J. Sohn, O. Guillon, Aging of atmospherically plasma sprayed chromium evaporation barriers, Surface and Coatings Technology 291 (2016) 115–122.[2]	J. Puranen, M. Pihlatie, J. Lagerbom, G. Bolelli, J. Laakso, L. Hyvärinen, M. Kylmälahti, O. Himanen, J. Kiviaho, L. Lusvarghi, P. Vuoristo, Post-mortem evaluation of oxidized atmospheric plasma sprayed Mn–Co–Fe oxide spinel coatings on SOFC interconnectors, International Journal of Hydrogen Energy 39 (2014) 17284–17294.
000836421 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000836421 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000836421 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000836421 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b1$$ufzj
000836421 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b2$$ufzj
000836421 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b3$$ufzj
000836421 909CO $$ooai:juser.fz-juelich.de:836421$$pVDB
000836421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165868$$aForschungszentrum Jülich$$b0$$kFZJ
000836421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b1$$kFZJ
000836421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b2$$kFZJ
000836421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b3$$kFZJ
000836421 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000836421 9141_ $$y2017
000836421 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000836421 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000836421 980__ $$aconf
000836421 980__ $$aVDB
000836421 980__ $$aI:(DE-Juel1)IEK-1-20101013
000836421 980__ $$aI:(DE-82)080011_20140620
000836421 980__ $$aUNRESTRICTED
000836421 981__ $$aI:(DE-Juel1)IMD-2-20101013