000836424 001__ 836424
000836424 005__ 20240711113544.0
000836424 0247_ $$2doi$$a10.1088/1741-4326/57/3/036007
000836424 0247_ $$2ISSN$$a0029-5515
000836424 0247_ $$2ISSN$$a1741-4326
000836424 0247_ $$2WOS$$aWOS:000390769600007
000836424 037__ $$aFZJ-2017-05545
000836424 041__ $$aEnglish
000836424 082__ $$a530
000836424 1001_ $$0P:(DE-HGF)0$$aJia, M.$$b0
000836424 245__ $$aEdge localized mode control using n = 1 resonant magnetic perturbation in the EAST tokamak
000836424 260__ $$aVienna$$bIAEA$$c2017
000836424 3367_ $$2DRIVER$$aarticle
000836424 3367_ $$2DataCite$$aOutput Types/Journal article
000836424 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501500588_31608
000836424 3367_ $$2BibTeX$$aARTICLE
000836424 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836424 3367_ $$00$$2EndNote$$aJournal Article
000836424 520__ $$aA set of in-vessel resonant magnetic perturbation (RMP) coil has been recently installed in EAST. It can generate a range of spectrum, and there is a relatively large window for edge localized mode (ELM) control according to the vacuum field modeling of the edge magnetic island overlapping area. Observation of mitigation and suppression of ELM in slow rotating plasmas during the application of an n = 1 RMP is presented in this paper. Strong ELM mitigation effect is observed in neutral beam injection heating plasmas. The ELM frequency increases by a factor of 5, and the crash amplitude and the particle flux are effectively reduced by a similar factor. Clear density pump-out and magnetic braking effects are observed during the application of RMP. Footprint splitting is observed during ELM mitigation and agrees well with vacuum field modelling. Strong ELM mitigation happens after a second sudden drop of plasma density, which indicates the possible effect due to field penetration of the resonant harmonics near the pedestal top, where the electron perpendicular rotation becomes flat and close to zero after the application of RMP. ELM suppression is achieved in a resonant window during the scan of the n = 1 RMP spectrum in radio-frequency (RF) dominant heating plasmas. The best spectrum for ELM suppression is consistent with the resonant peak of RMP by taking into account of linear magnetohydrodynamics plasma response. There is no mode locking during the application of n = 1 RMP in ELMy H-mode plasmas, although the maximal coil current is applied.
000836424 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000836424 588__ $$aDataset connected to CrossRef
000836424 7001_ $$0P:(DE-HGF)0$$aZang, Q.$$b1
000836424 7001_ $$0P:(DE-HGF)0$$aLiu, Y. Q.$$b2
000836424 7001_ $$0P:(DE-HGF)0$$aGuo, W.$$b3
000836424 7001_ $$0P:(DE-HGF)0$$aGu, S.$$b4
000836424 7001_ $$0P:(DE-HGF)0$$aLyu, B.$$b5
000836424 7001_ $$0P:(DE-HGF)0$$aZhao, H.$$b6
000836424 7001_ $$0P:(DE-HGF)0$$aLi, G.$$b7
000836424 7001_ $$0P:(DE-HGF)0$$aQian, J.$$b8
000836424 7001_ $$0P:(DE-HGF)0$$aChu, N.$$b9
000836424 7001_ $$0P:(DE-HGF)0$$aWang, H. H.$$b10
000836424 7001_ $$0P:(DE-HGF)0$$aShi, T.$$b11
000836424 7001_ $$0P:(DE-HGF)0$$aHe, K.$$b12
000836424 7001_ $$0P:(DE-HGF)0$$aShen, B.$$b13
000836424 7001_ $$0P:(DE-HGF)0$$aGong, X.$$b14
000836424 7001_ $$0P:(DE-HGF)0$$aJi, X.$$b15
000836424 7001_ $$0P:(DE-HGF)0$$aQi, M.$$b16
000836424 7001_ $$0P:(DE-HGF)0$$aYuan, Q.$$b17
000836424 7001_ $$0P:(DE-HGF)0$$aSheng, Z.$$b18
000836424 7001_ $$0P:(DE-HGF)0$$aGao, G.$$b19
000836424 7001_ $$0P:(DE-Juel1)145219$$aSong, Y.$$b20
000836424 7001_ $$0P:(DE-HGF)0$$aFu, P.$$b21
000836424 7001_ $$0P:(DE-HGF)0$$aWan, B.$$b22
000836424 7001_ $$0P:(DE-HGF)0$$aSun, Y.$$b23$$eCorresponding author
000836424 7001_ $$0P:(DE-HGF)0$$aWang, S.$$b24
000836424 7001_ $$0P:(DE-HGF)0$$aChen, D.$$b25
000836424 7001_ $$0P:(DE-HGF)0$$aXu, L.$$b26
000836424 7001_ $$0P:(DE-HGF)0$$aZhang, T.$$b27
000836424 7001_ $$0P:(DE-HGF)0$$aLiu, Y.$$b28
000836424 7001_ $$0P:(DE-HGF)0$$aLi, Yun$$b29
000836424 7001_ $$0P:(DE-HGF)0$$aYang, X.$$b30
000836424 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b31$$ufzj
000836424 7001_ $$0P:(DE-HGF)0$$aWang, L.$$b32
000836424 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/57/3/036007$$gVol. 57, no. 3, p. 036007 -$$n3$$p036007 -$$tNuclear fusion$$v57$$x1741-4326$$y2017
000836424 8564_ $$uhttps://juser.fz-juelich.de/record/836424/files/Sun_2017_Nucl._Fusion_57_036007.pdf$$yRestricted
000836424 8564_ $$uhttps://juser.fz-juelich.de/record/836424/files/Sun_2017_Nucl._Fusion_57_036007.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836424 909CO $$ooai:juser.fz-juelich.de:836424$$pVDB
000836424 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b31$$kFZJ
000836424 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000836424 9141_ $$y2017
000836424 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836424 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000836424 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015
000836424 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836424 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836424 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836424 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836424 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836424 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836424 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836424 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836424 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836424 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000836424 980__ $$ajournal
000836424 980__ $$aVDB
000836424 980__ $$aI:(DE-Juel1)IEK-4-20101013
000836424 980__ $$aUNRESTRICTED
000836424 981__ $$aI:(DE-Juel1)IFN-1-20101013