001     836424
005     20240711113544.0
024 7 _ |a 10.1088/1741-4326/57/3/036007
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000390769600007
|2 WOS
037 _ _ |a FZJ-2017-05545
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Jia, M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Edge localized mode control using n   =  1 resonant magnetic perturbation in the EAST tokamak
260 _ _ |a Vienna
|c 2017
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501500588_31608
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A set of in-vessel resonant magnetic perturbation (RMP) coil has been recently installed in EAST. It can generate a range of spectrum, and there is a relatively large window for edge localized mode (ELM) control according to the vacuum field modeling of the edge magnetic island overlapping area. Observation of mitigation and suppression of ELM in slow rotating plasmas during the application of an n  =  1 RMP is presented in this paper. Strong ELM mitigation effect is observed in neutral beam injection heating plasmas. The ELM frequency increases by a factor of 5, and the crash amplitude and the particle flux are effectively reduced by a similar factor. Clear density pump-out and magnetic braking effects are observed during the application of RMP. Footprint splitting is observed during ELM mitigation and agrees well with vacuum field modelling. Strong ELM mitigation happens after a second sudden drop of plasma density, which indicates the possible effect due to field penetration of the resonant harmonics near the pedestal top, where the electron perpendicular rotation becomes flat and close to zero after the application of RMP. ELM suppression is achieved in a resonant window during the scan of the n  =  1 RMP spectrum in radio-frequency (RF) dominant heating plasmas. The best spectrum for ELM suppression is consistent with the resonant peak of RMP by taking into account of linear magnetohydrodynamics plasma response. There is no mode locking during the application of n  =  1 RMP in ELMy H-mode plasmas, although the maximal coil current is applied.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zang, Q.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Liu, Y. Q.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Guo, W.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gu, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lyu, B.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhao, H.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Li, G.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Qian, J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Chu, N.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Wang, H. H.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Shi, T.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a He, K.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Shen, B.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Gong, X.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Ji, X.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Qi, M.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Yuan, Q.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Sheng, Z.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Gao, G.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Song, Y.
|0 P:(DE-Juel1)145219
|b 20
700 1 _ |a Fu, P.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Wan, B.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Sun, Y.
|0 P:(DE-HGF)0
|b 23
|e Corresponding author
700 1 _ |a Wang, S.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Chen, D.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Xu, L.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Zhang, T.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Liu, Y.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Li, Yun
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Yang, X.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Liang, Yunfeng
|0 P:(DE-Juel1)130088
|b 31
|u fzj
700 1 _ |a Wang, L.
|0 P:(DE-HGF)0
|b 32
773 _ _ |a 10.1088/1741-4326/57/3/036007
|g Vol. 57, no. 3, p. 036007 -
|0 PERI:(DE-600)2037980-8
|n 3
|p 036007 -
|t Nuclear fusion
|v 57
|y 2017
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/836424/files/Sun_2017_Nucl._Fusion_57_036007.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836424/files/Sun_2017_Nucl._Fusion_57_036007.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836424
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 31
|6 P:(DE-Juel1)130088
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21