000836430 001__ 836430
000836430 005__ 20240711113545.0
000836430 0247_ $$2doi$$a10.1088/1361-6587/aa6988
000836430 0247_ $$2ISSN$$a0032-1028
000836430 0247_ $$2ISSN$$a0368-3281
000836430 0247_ $$2ISSN$$a0741-3335
000836430 0247_ $$2ISSN$$a1361-6587
000836430 0247_ $$2ISSN$$a1879-2979
000836430 0247_ $$2WOS$$aWOS:000403784600001
000836430 0247_ $$2altmetric$$aaltmetric:18809157
000836430 037__ $$aFZJ-2017-05551
000836430 041__ $$aEnglish
000836430 082__ $$a530
000836430 1001_ $$0P:(DE-HGF)0$$aHuang, J.$$b0$$eCorresponding author
000836430 245__ $$aAnalysis of anisotropic effects on energy induced by lower hybrid wave heating on EAST
000836430 260__ $$aBristol$$bIOP Publ.$$c2017
000836430 3367_ $$2DRIVER$$aarticle
000836430 3367_ $$2DataCite$$aOutput Types/Journal article
000836430 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501507851_31603
000836430 3367_ $$2BibTeX$$aARTICLE
000836430 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836430 3367_ $$00$$2EndNote$$aJournal Article
000836430 520__ $$aIt has been pointed out that plasma anisotropy has a significant impact on the characteristics of magnetohydrodynamic equilibrium and instability. Recently, anisotropic pressure effects induced by 4.6 GHz lower hybrid wave (LHW) heating on the Experimental Advanced Superconducting Tokamak (EAST) has been investigated. The mechanism is due to the high-energy electrons generated by LHW Landau damping effects in the direction parallel to the magnetic field line.
000836430 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000836430 588__ $$aDataset connected to CrossRef
000836430 7001_ $$0P:(DE-HGF)0$$aQian, J. P.$$b1
000836430 7001_ $$0P:(DE-HGF)0$$aXu, L. Q.$$b2
000836430 7001_ $$0P:(DE-HGF)0$$aHe, K. Y.$$b3
000836430 7001_ $$0P:(DE-HGF)0$$aLiu, Y. K.$$b4
000836430 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b5
000836430 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/1361-6587/aa6988$$gVol. 59, no. 6, p. 065010 -$$n6$$p065010 $$tPlasma physics and controlled fusion$$v59$$x1361-6587$$y2017
000836430 8564_ $$uhttps://juser.fz-juelich.de/record/836430/files/Huang_2017_Plasma_Phys._Control._Fusion_59_065010.pdf$$yRestricted
000836430 8564_ $$uhttps://juser.fz-juelich.de/record/836430/files/Huang_2017_Plasma_Phys._Control._Fusion_59_065010.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836430 909CO $$ooai:juser.fz-juelich.de:836430$$pVDB
000836430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b5$$kFZJ
000836430 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000836430 9141_ $$y2017
000836430 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836430 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000836430 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836430 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA PHYS CONTR F : 2015
000836430 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836430 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836430 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836430 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836430 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836430 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836430 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836430 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836430 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000836430 980__ $$ajournal
000836430 980__ $$aVDB
000836430 980__ $$aI:(DE-Juel1)IEK-4-20101013
000836430 980__ $$aUNRESTRICTED
000836430 981__ $$aI:(DE-Juel1)IFN-1-20101013