000836443 001__ 836443 000836443 005__ 20240711113546.0 000836443 0247_ $$2doi$$a10.1063/1.4953605 000836443 0247_ $$2ISSN$$a1070-664X 000836443 0247_ $$2ISSN$$a1089-7674 000836443 0247_ $$2WOS$$aWOS:000379172200054 000836443 0247_ $$2Handle$$a2128/18126 000836443 037__ $$aFZJ-2017-05564 000836443 082__ $$a530 000836443 1001_ $$00000-0002-9625-9185$$aYuan, Yi$$b0 000836443 245__ $$aControl of sawtooth via ECRH on EAST tokamak 000836443 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2016 000836443 3367_ $$2DRIVER$$aarticle 000836443 3367_ $$2DataCite$$aOutput Types/Journal article 000836443 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501593192_13621 000836443 3367_ $$2BibTeX$$aARTICLE 000836443 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000836443 3367_ $$00$$2EndNote$$aJournal Article 000836443 520__ $$aLocalized electron heating produced by electron cyclotron resonant heating (ECRH) system has been proven to be powerful tools for controlling sawtooth instabilities, because such system allows to directly modify the local plasma parameters that determine the evolution of sawtooth periods. In this paper, we present the experimental results carried out on experimental advanced superconducting tokamak (EAST) with regard to sawtooth period control via ECRH. The electron cyclotron heating system on EAST was capable of inject electron cyclotron wave toward certain locations inside or outside q = 1 magnetic surface on the poloidal cross section, which renders us able to investigate the evolution of sawtooth period against the ECRH deposition position. It is found that when ECRH deposition position is inside the q = 1 surface, the sawtooth oscillation is destabilized (characterized by reduced sawtooth period). So far, inside the q = 1 surface, there are not enough EAST experiment data that can reveal more detailed information about the relation between ECRH deposition position and sawtooth period. When ECRH deposition is outside the q = 1 surface, the sawtooth oscillation is stabilized (characterized by prolonged sawtooth period), and the sawtooth periods gradually decrease as ECRH deposition position sweeps away from q = 1 surface. The sawtooth periods reach maximum when ECRH deposition position falls around q = 1 surface. The magnetic shear at q = 1 surface is calculated to offer insights for the temporal evolution of sawtooth. The result has been found consistent with the Porcelli model 000836443 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0 000836443 588__ $$aDataset connected to CrossRef 000836443 7001_ $$aHu, Liqun$$b1 000836443 7001_ $$0P:(DE-HGF)0$$aXu, Liqing$$b2$$eCorresponding author 000836443 7001_ $$aWang, Xiaoguang$$b3 000836443 7001_ $$aWang, Xiaojie$$b4 000836443 7001_ $$aXu, Handong$$b5 000836443 7001_ $$aLuo, Zhengping$$b6 000836443 7001_ $$aChen, Kaiyun$$b7 000836443 7001_ $$aLin, Shiyao$$b8 000836443 7001_ $$aDuan, Yanmin$$b9 000836443 7001_ $$aChang, Pengxiang$$b10 000836443 7001_ $$aZhao, Hailin$$b11 000836443 7001_ $$aHe, Kaiyang$$b12 000836443 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b13 000836443 773__ $$0PERI:(DE-600)1472746-8$$a10.1063/1.4953605$$gVol. 23, no. 6, p. 062503 -$$n6$$p062503 -$$tPhysics of plasmas$$v23$$x1089-7674$$y2016 000836443 8564_ $$uhttps://juser.fz-juelich.de/record/836443/files/1.4953605.pdf$$yOpenAccess 000836443 8564_ $$uhttps://juser.fz-juelich.de/record/836443/files/1.4953605.gif?subformat=icon$$xicon$$yOpenAccess 000836443 8564_ $$uhttps://juser.fz-juelich.de/record/836443/files/1.4953605.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000836443 8564_ $$uhttps://juser.fz-juelich.de/record/836443/files/1.4953605.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000836443 8564_ $$uhttps://juser.fz-juelich.de/record/836443/files/1.4953605.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000836443 909CO $$ooai:juser.fz-juelich.de:836443$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000836443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b13$$kFZJ 000836443 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0 000836443 9141_ $$y2017 000836443 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000836443 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000836443 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS PLASMAS : 2015 000836443 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000836443 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000836443 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000836443 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000836443 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000836443 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000836443 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000836443 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000836443 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000836443 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000836443 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000836443 9801_ $$aFullTexts 000836443 980__ $$ajournal 000836443 980__ $$aVDB 000836443 980__ $$aUNRESTRICTED 000836443 980__ $$aI:(DE-Juel1)IEK-4-20101013 000836443 981__ $$aI:(DE-Juel1)IFN-1-20101013