000836443 001__ 836443
000836443 005__ 20240711113546.0
000836443 0247_ $$2doi$$a10.1063/1.4953605
000836443 0247_ $$2ISSN$$a1070-664X
000836443 0247_ $$2ISSN$$a1089-7674
000836443 0247_ $$2WOS$$aWOS:000379172200054
000836443 0247_ $$2Handle$$a2128/18126
000836443 037__ $$aFZJ-2017-05564
000836443 082__ $$a530
000836443 1001_ $$00000-0002-9625-9185$$aYuan, Yi$$b0
000836443 245__ $$aControl of sawtooth via ECRH on EAST tokamak
000836443 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2016
000836443 3367_ $$2DRIVER$$aarticle
000836443 3367_ $$2DataCite$$aOutput Types/Journal article
000836443 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501593192_13621
000836443 3367_ $$2BibTeX$$aARTICLE
000836443 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836443 3367_ $$00$$2EndNote$$aJournal Article
000836443 520__ $$aLocalized electron heating produced by electron cyclotron resonant heating (ECRH) system has been proven to be powerful tools for controlling sawtooth instabilities, because such system allows to directly modify the local plasma parameters that determine the evolution of sawtooth periods. In this paper, we present the experimental results carried out on experimental advanced superconducting tokamak (EAST) with regard to sawtooth period control via ECRH. The electron cyclotron heating system on EAST was capable of inject electron cyclotron wave toward certain locations inside or outside q = 1 magnetic surface on the poloidal cross section, which renders us able to investigate the evolution of sawtooth period against the ECRH deposition position. It is found that when ECRH deposition position is inside the q = 1 surface, the sawtooth oscillation is destabilized (characterized by reduced sawtooth period). So far, inside the q = 1 surface, there are not enough EAST experiment data that can reveal more detailed information about the relation between ECRH deposition position and sawtooth period. When ECRH deposition is outside the q = 1 surface, the sawtooth oscillation is stabilized (characterized by prolonged sawtooth period), and the sawtooth periods gradually decrease as ECRH deposition position sweeps away from q = 1 surface. The sawtooth periods reach maximum when ECRH deposition position falls around q = 1 surface. The magnetic shear at q = 1 surface is calculated to offer insights for the temporal evolution of sawtooth. The result has been found consistent with the Porcelli model
000836443 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000836443 588__ $$aDataset connected to CrossRef
000836443 7001_ $$aHu, Liqun$$b1
000836443 7001_ $$0P:(DE-HGF)0$$aXu, Liqing$$b2$$eCorresponding author
000836443 7001_ $$aWang, Xiaoguang$$b3
000836443 7001_ $$aWang, Xiaojie$$b4
000836443 7001_ $$aXu, Handong$$b5
000836443 7001_ $$aLuo, Zhengping$$b6
000836443 7001_ $$aChen, Kaiyun$$b7
000836443 7001_ $$aLin, Shiyao$$b8
000836443 7001_ $$aDuan, Yanmin$$b9
000836443 7001_ $$aChang, Pengxiang$$b10
000836443 7001_ $$aZhao, Hailin$$b11
000836443 7001_ $$aHe, Kaiyang$$b12
000836443 7001_ $$0P:(DE-Juel1)130088$$aLiang, Yunfeng$$b13
000836443 773__ $$0PERI:(DE-600)1472746-8$$a10.1063/1.4953605$$gVol. 23, no. 6, p. 062503 -$$n6$$p062503 -$$tPhysics of plasmas$$v23$$x1089-7674$$y2016
000836443 8564_ $$uhttps://juser.fz-juelich.de/record/836443/files/1.4953605.pdf$$yOpenAccess
000836443 8564_ $$uhttps://juser.fz-juelich.de/record/836443/files/1.4953605.gif?subformat=icon$$xicon$$yOpenAccess
000836443 8564_ $$uhttps://juser.fz-juelich.de/record/836443/files/1.4953605.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000836443 8564_ $$uhttps://juser.fz-juelich.de/record/836443/files/1.4953605.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000836443 8564_ $$uhttps://juser.fz-juelich.de/record/836443/files/1.4953605.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000836443 909CO $$ooai:juser.fz-juelich.de:836443$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000836443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130088$$aForschungszentrum Jülich$$b13$$kFZJ
000836443 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000836443 9141_ $$y2017
000836443 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836443 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836443 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS PLASMAS : 2015
000836443 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836443 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836443 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836443 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836443 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836443 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836443 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836443 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836443 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836443 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836443 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000836443 9801_ $$aFullTexts
000836443 980__ $$ajournal
000836443 980__ $$aVDB
000836443 980__ $$aUNRESTRICTED
000836443 980__ $$aI:(DE-Juel1)IEK-4-20101013
000836443 981__ $$aI:(DE-Juel1)IFN-1-20101013