001     836443
005     20240711113546.0
024 7 _ |a 10.1063/1.4953605
|2 doi
024 7 _ |a 1070-664X
|2 ISSN
024 7 _ |a 1089-7674
|2 ISSN
024 7 _ |a WOS:000379172200054
|2 WOS
024 7 _ |a 2128/18126
|2 Handle
037 _ _ |a FZJ-2017-05564
082 _ _ |a 530
100 1 _ |a Yuan, Yi
|0 0000-0002-9625-9185
|b 0
245 _ _ |a Control of sawtooth via ECRH on EAST tokamak
260 _ _ |a [S.l.]
|c 2016
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501593192_13621
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Localized electron heating produced by electron cyclotron resonant heating (ECRH) system has been proven to be powerful tools for controlling sawtooth instabilities, because such system allows to directly modify the local plasma parameters that determine the evolution of sawtooth periods. In this paper, we present the experimental results carried out on experimental advanced superconducting tokamak (EAST) with regard to sawtooth period control via ECRH. The electron cyclotron heating system on EAST was capable of inject electron cyclotron wave toward certain locations inside or outside q = 1 magnetic surface on the poloidal cross section, which renders us able to investigate the evolution of sawtooth period against the ECRH deposition position. It is found that when ECRH deposition position is inside the q = 1 surface, the sawtooth oscillation is destabilized (characterized by reduced sawtooth period). So far, inside the q = 1 surface, there are not enough EAST experiment data that can reveal more detailed information about the relation between ECRH deposition position and sawtooth period. When ECRH deposition is outside the q = 1 surface, the sawtooth oscillation is stabilized (characterized by prolonged sawtooth period), and the sawtooth periods gradually decrease as ECRH deposition position sweeps away from q = 1 surface. The sawtooth periods reach maximum when ECRH deposition position falls around q = 1 surface. The magnetic shear at q = 1 surface is calculated to offer insights for the temporal evolution of sawtooth. The result has been found consistent with the Porcelli model
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hu, Liqun
|b 1
700 1 _ |a Xu, Liqing
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Wang, Xiaoguang
|b 3
700 1 _ |a Wang, Xiaojie
|b 4
700 1 _ |a Xu, Handong
|b 5
700 1 _ |a Luo, Zhengping
|b 6
700 1 _ |a Chen, Kaiyun
|b 7
700 1 _ |a Lin, Shiyao
|b 8
700 1 _ |a Duan, Yanmin
|b 9
700 1 _ |a Chang, Pengxiang
|b 10
700 1 _ |a Zhao, Hailin
|b 11
700 1 _ |a He, Kaiyang
|b 12
700 1 _ |a Liang, Yunfeng
|0 P:(DE-Juel1)130088
|b 13
773 _ _ |a 10.1063/1.4953605
|g Vol. 23, no. 6, p. 062503 -
|0 PERI:(DE-600)1472746-8
|n 6
|p 062503 -
|t Physics of plasmas
|v 23
|y 2016
|x 1089-7674
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/836443/files/1.4953605.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/836443/files/1.4953605.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/836443/files/1.4953605.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-700
|u https://juser.fz-juelich.de/record/836443/files/1.4953605.jpg?subformat=icon-700
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/836443/files/1.4953605.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:836443
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130088
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS PLASMAS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21