000836462 001__ 836462 000836462 005__ 20210129231010.0 000836462 0247_ $$2doi$$a10.1594/PANGAEA.870605 000836462 0247_ $$2altmetric$$aaltmetric:23469198 000836462 037__ $$aFZJ-2017-05580 000836462 041__ $$aeng 000836462 1001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b0$$ufzj 000836462 245__ $$aA global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves, link to model result files in NetCDF format, supplement to: Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry (2017): A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves. Earth System Science Data 9(2), 529-543 000836462 260__ $$bPANGAEA - Data Publisher for Earth & Environmental Science$$c2017 000836462 3367_ $$2BibTeX$$aMISC 000836462 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1501746974_30360 000836462 3367_ $$026$$2EndNote$$aChart or Table 000836462 3367_ $$2DataCite$$aDataset 000836462 3367_ $$2ORCID$$aDATA_SET 000836462 3367_ $$2DINI$$aResearchData 000836462 520__ $$aClimate and numerical weather prediction models, re-analyses, as well as agroecosystem models, require adequate parameter values for soil hydraulic properties (describing e.g. the shape of the soil water retention and hydraulic conductivity curves) at the global scale. Resampling of soil hydraulic properties to a model grid is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce imprecision and parameter value discrepancies throughout spatial scales due to nonlinear shape of the hydraulic conductivity and water retention curves. Therefore, we developed a method to scale van Genuchten hydraulic parameters (theta_s, theta_r, alpha, n, Ks) to individual model grids and provide a global data set that overcomes the mentioned problems. The data set is based on the ROSETTA pedotransfer function of Schaap et al. (2001, doi:10.1016/S0022-1694(01)00466-8) applied to the SoilGrids1km data set of Hengl et al. (2014, doi:10.1371/journal.pone.0105992). The approach is based on Miller-Miller scaling that fits the shape parameters of the water retention curve to all sub-grid water retention curves to provide the best-fit parameter values for the grid cell at model resolution, here 0.25°; at the same it maintains the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local scaling parameters are also valid for this function. In addition, information on global sub-grid scaling variance is given that enables modelers to improve dynamical downscaling of (regional) climate models or to perturb soil hydraulic parameters for model ensemble generation. These improvements should allow for more informed studies of the effects of variability in soil physical properties on land surface-atmosphere exchange. 000836462 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000836462 588__ $$aDataset connected to DataCite 000836462 7001_ $$0P:(DE-Juel1)129469$$aHerbst, Michael$$b1$$ufzj 000836462 7001_ $$0P:(DE-Juel1)129553$$aWeihermüller, Lutz$$b2$$ufzj 000836462 7001_ $$0P:(DE-HGF)0$$aVerhoef, Anne$$b3 000836462 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4$$ufzj 000836462 773__ $$a10.1594/PANGAEA.870605 000836462 909CO $$ooai:juser.fz-juelich.de:836462$$pVDB 000836462 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b0$$kFZJ 000836462 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129469$$aForschungszentrum Jülich$$b1$$kFZJ 000836462 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129553$$aForschungszentrum Jülich$$b2$$kFZJ 000836462 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ 000836462 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000836462 9141_ $$y2017 000836462 920__ $$lyes 000836462 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000836462 980__ $$adataset 000836462 980__ $$aVDB 000836462 980__ $$aI:(DE-Juel1)IBG-3-20101118 000836462 980__ $$aUNRESTRICTED