000836463 001__ 836463
000836463 005__ 20210129231010.0
000836463 0247_ $$2doi$$a10.1074/jbc.M405914200
000836463 0247_ $$2WOS$$aWOS:000224957000012
000836463 0247_ $$2altmetric$$aaltmetric:23713307
000836463 0247_ $$2pmid$$apmid:15322133
000836463 037__ $$aFZJ-2017-05581
000836463 082__ $$a570
000836463 1001_ $$0P:(DE-HGF)0$$aRzepecki, P.$$b0
000836463 245__ $$aPrevention of Alzheimer's disease-associated Abeta aggregation by rationally designed nonpeptidic beta-sheet ligands.
000836463 260__ $$aBethesda, Md.$$bSoc.$$c2004
000836463 3367_ $$2DRIVER$$aarticle
000836463 3367_ $$2DataCite$$aOutput Types/Journal article
000836463 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502201548_1184
000836463 3367_ $$2BibTeX$$aARTICLE
000836463 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836463 3367_ $$00$$2EndNote$$aJournal Article
000836463 520__ $$aA new concept is introduced for the rational design of β-sheet ligands, which prevent protein aggregation. Oligomeric acylated aminopyrazoles with a donor-acceptor-donor (DAD) hydrogen bond pattern complementary to that of a β-sheet efficiently block the solvent-exposed β-sheet portions in Aβ-(1–40) and thereby prevent formation of insoluble protein aggregates. Density gradient centrifugation revealed that in the initial phase, the size of Aβ aggregates was efficiently kept between the trimeric and 15-meric state, whereas after 5 days an additional high molecular weight fraction appeared. With fluorescence correlation spectroscopy (FCS) exactly those two, i.e. a dimeric aminopyrazole with an oxalyl spacer and a trimeric head-to-tail connected aminopyrazole, of nine similar aminopyrazole ligands were identified as efficient aggregation retardants whose minimum energy conformations showed a perfect complementarity to a β-sheet. The concentration dependence of the inhibitory effect of a trimeric aminopyrazole derivative allowed an estimation of the dissociation constant in the range of 10–5 m. Finally, electrospray ionization mass spectrometry (ESI-MS) was used to determine the aggregation kinetics of Aβ-(1–40) in the absence and in the presence of the ligands. From the comparable decrease in Aβ monomer concentration, we conclude that these β-sheet ligands do not prevent the initial oligomerization of monomeric Aβ but rather block further aggregation of spontaneously formed small oligomers. Together with the results from density gradient centrifugation and fluorescence correlation spectroscopy it is now possible to restrict the approximate size of soluble Aβ aggregates formed in the presence of both inhibitors from 3- to 15-mers.
000836463 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000836463 7001_ $$0P:(DE-Juel1)162443$$aNagel-Steger, Luitgard$$b1
000836463 7001_ $$0P:(DE-Juel1)162167$$aFeuerstein, Sophie$$b2
000836463 7001_ $$0P:(DE-HGF)0$$aLinne, U.$$b3
000836463 7001_ $$0P:(DE-HGF)0$$aMolt, O.$$b4
000836463 7001_ $$0P:(DE-HGF)0$$aZadmard, R.$$b5
000836463 7001_ $$0P:(DE-HGF)0$$aAschermann, K.$$b6
000836463 7001_ $$0P:(DE-HGF)0$$aWehner, M.$$b7
000836463 7001_ $$0P:(DE-HGF)0$$aSchrader, T.$$b8$$eCorresponding author
000836463 7001_ $$0P:(DE-HGF)0$$aRiesner, D.$$b9
000836463 773__ $$0PERI:(DE-600)1474604-9$$a10.1074/jbc.M405914200$$p47497-47505$$tThe journal of biological chemistry$$v279$$x0021-9258$$y2004
000836463 8564_ $$uhttps://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.pdf$$yRestricted
000836463 8564_ $$uhttps://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.gif?subformat=icon$$xicon$$yRestricted
000836463 8564_ $$uhttps://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836463 8564_ $$uhttps://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836463 8564_ $$uhttps://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836463 8564_ $$uhttps://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836463 909CO $$ooai:juser.fz-juelich.de:836463$$pVDB
000836463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162443$$aForschungszentrum Jülich$$b1$$kFZJ
000836463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162167$$aForschungszentrum Jülich$$b2$$kFZJ
000836463 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000836463 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836463 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836463 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836463 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2015
000836463 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836463 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836463 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836463 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836463 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836463 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836463 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000836463 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000836463 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836463 920__ $$lyes
000836463 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000836463 980__ $$ajournal
000836463 980__ $$aVDB
000836463 980__ $$aI:(DE-Juel1)ICS-6-20110106
000836463 980__ $$aUNRESTRICTED
000836463 981__ $$aI:(DE-Juel1)IBI-7-20200312