001     836463
005     20210129231010.0
024 7 _ |a 10.1074/jbc.M405914200
|2 doi
024 7 _ |a WOS:000224957000012
|2 WOS
024 7 _ |a altmetric:23713307
|2 altmetric
024 7 _ |a pmid:15322133
|2 pmid
037 _ _ |a FZJ-2017-05581
082 _ _ |a 570
100 1 _ |0 P:(DE-HGF)0
|a Rzepecki, P.
|b 0
245 _ _ |a Prevention of Alzheimer's disease-associated Abeta aggregation by rationally designed nonpeptidic beta-sheet ligands.
260 _ _ |a Bethesda, Md.
|b Soc.
|c 2004
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1502201548_1184
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a A new concept is introduced for the rational design of β-sheet ligands, which prevent protein aggregation. Oligomeric acylated aminopyrazoles with a donor-acceptor-donor (DAD) hydrogen bond pattern complementary to that of a β-sheet efficiently block the solvent-exposed β-sheet portions in Aβ-(1–40) and thereby prevent formation of insoluble protein aggregates. Density gradient centrifugation revealed that in the initial phase, the size of Aβ aggregates was efficiently kept between the trimeric and 15-meric state, whereas after 5 days an additional high molecular weight fraction appeared. With fluorescence correlation spectroscopy (FCS) exactly those two, i.e. a dimeric aminopyrazole with an oxalyl spacer and a trimeric head-to-tail connected aminopyrazole, of nine similar aminopyrazole ligands were identified as efficient aggregation retardants whose minimum energy conformations showed a perfect complementarity to a β-sheet. The concentration dependence of the inhibitory effect of a trimeric aminopyrazole derivative allowed an estimation of the dissociation constant in the range of 10–5 m. Finally, electrospray ionization mass spectrometry (ESI-MS) was used to determine the aggregation kinetics of Aβ-(1–40) in the absence and in the presence of the ligands. From the comparable decrease in Aβ monomer concentration, we conclude that these β-sheet ligands do not prevent the initial oligomerization of monomeric Aβ but rather block further aggregation of spontaneously formed small oligomers. Together with the results from density gradient centrifugation and fluorescence correlation spectroscopy it is now possible to restrict the approximate size of soluble Aβ aggregates formed in the presence of both inhibitors from 3- to 15-mers.
536 _ _ |0 G:(DE-HGF)POF3-553
|a 553 - Physical Basis of Diseases (POF3-553)
|c POF3-553
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)162443
|a Nagel-Steger, Luitgard
|b 1
700 1 _ |0 P:(DE-Juel1)162167
|a Feuerstein, Sophie
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Linne, U.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Molt, O.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Zadmard, R.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Aschermann, K.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Wehner, M.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Schrader, T.
|b 8
|e Corresponding author
700 1 _ |0 P:(DE-HGF)0
|a Riesner, D.
|b 9
773 _ _ |0 PERI:(DE-600)1474604-9
|a 10.1074/jbc.M405914200
|p 47497-47505
|t The journal of biological chemistry
|v 279
|x 0021-9258
|y 2004
856 4 _ |u https://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836463/files/J.%20Biol.%20Chem.-2004-Rzepecki-47497-505.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836463
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162443
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162167
|a Forschungszentrum Jülich
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-553
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J BIOL CHEM : 2015
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21