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We analyze the properties of order parameters measuring synchronization and phase locking in

complex oscillator networks. First, we review network order parameters previously introduced and

reveal several shortcomings: none of the introduced order parameters capture all transitions from

incoherence over phase locking to full synchrony for arbitrary, finite networks. We then introduce

an alternative, universal order parameter that accurately tracks the degree of partial phase locking

and synchronization, adapting the traditional definition to account for the network topology and its

influence on the phase coherence of the oscillators. We rigorously prove that this order parameter

is strictly monotonously increasing with the coupling strength in the phase locked state, directly

reflecting the dynamic stability of the network. Furthermore, it indicates the onset of full phase

locking by a diverging slope at the critical coupling strength. The order parameter may find

applications across systems where different types of synchrony are possible, including biological

networks and power grids. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4995963]

Many dynamical systems in physics, biology, or engi-
neering can be described as coupled phase oscillators,
often in a network with a complex interaction topology.
The prototypical model considered in this context is net-
works of Kuramoto oscillators. To study the synchroni-
zation in such systems, several order parameters have
been introduced, adapting the original Kuramoto order
parameter, defined for all-to-all coupled oscillators, to
complex interaction networks. However, none of the
order parameters manages to fully track the transition
from oscillators moving at their individual frequencies
to full synchronization of the network. Here, we propose
a universal order parameter to study synchronization in
finite networks of phase oscillators, tracking all stages of
synchronization. This order parameter may be used to
study systems where different stages of synchrony are
relevant. Additionally, we rigorously prove several help-
ful qualities, relating the order parameter not only to
the synchrony, but also to the dynamical stability of the
network.

I. INTRODUCTION

Many oscillatory systems enter stable limit cycles as their

dynamic steady state. If such systems are coupled, they often

interact only through their positions along their periodic orbit,

their phases. The simplest prototypical model to describe such

coupled phase oscillators is the celebrated Kuramoto model.1,2

It characterizes the collective dynamics of a variety of phase

oscillator systems ranging from chemical reactions3 and neural

networks4,5 to coupled Josephson junctions,6 laser arrays,7 opto-

mechanical systems,8 and mean-field quantum systems.9,10

Studies of the Kuramoto model and more general

phase oscillator networks typically focus on the onset of

synchronization between the individual oscillators.1–3,11,12

Starting from the analytical results for the mean field

behavior in the all-to-all coupled Kuramoto model, cor-

rectly predicting the emergence of partial phase locking,

extensions of this result to various network topologies

were developed.13–16 These extensions often use a similar

methodology and define an adapted order parameter to

analyze the transition to synchrony. Interestingly, none of

these order parameters captures all transitions from the

incoherent to the completely synchronized state for arbi-

trary, finite networks.

Depending on the application, different states of phase

ordering are relevant and a different order parameter is appropri-

ate. Commonly, the onset of partial phase locking has received

most interest.1–3 For example, partial phase locking indicates the

growth of number fluctuations in quantum mean-field mod-

els.9,10 In contrast, in technical systems such as power grids, a

fully phase locked state is required for stable operation.17–20

We propose a universal order parameter that accurately

reflects the phase coherence of phase oscillators in any net-

work, describing the initial growth of partially phase locked

clusters as well as the convergence to full synchrony. This

order parameter is particularly suited to study the fully phase

locked state as it directly reflects the dynamic stability of this

steady state. It increases monotonically with the coupling

strength, in contrast to previously defined mean field order

parameters.
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II. PHASE OSCILLATORS AND THE KURAMOTO
MODEL

Limit cycles are ubiquitous as dynamically stable states

in a wide range of systems. When such systems are coupled,

interactions can typically be approximated as interactions

between their phases hi. The Kuramoto model

dhi

dt
¼ xi þ K

XN

j¼1

Ai;j sin hj � hi
� �

; (1)

is one of the simplest models for such coupled phase oscillators.

It describes the dynamics of N oscillators with natural frequen-

cies xi and sinusoidal coupling. The parameter K denotes the

coupling strength of the interactions and Ai,j 2 {0, 1} is the

adjacency matrix of the interaction network, describing which

nodes interact with which other nodes. The results easily extend

to inhomogeneous coupling strengths with Ai;j 2 R. In many

applications, interactions between individual oscillators are

reciprocal, and in the following, we assume an undirected net-

work, i.e., a symmetric adjacency matrix Ai,j¼Aj,i. Similarly,

we can without loss of generality consider a co-rotating frame

such that the natural frequencies of the oscillators are centered

around 0 and we have
P

i xi ¼ 0, where the sum runs from 1

to N. In the following, we only consider connected networks, as

otherwise we can treat the connected sub-systems individually.

The dynamics of coupled Kuramoto oscillators depends

strongly on the strength K of the interactions. For small coupling

K, all oscillators rotate (almost) independently with their natural

frequencies xj. In this state, the phases are incoherent. Above

some critical coupling strength K�Kc1, a subset of the oscilla-

tors starts to synchronize such that their time averaged frequen-

cies hdhi
dt
it become identical. The phases of these oscillators then

move together in a partially phase locked state and their phase

differences hi – hj are bounded. When the coupling becomes

even stronger, K�Kc2, a fully phase locked state appears. All

oscillators synchronize to a common frequency dhi
dt
¼ const: ¼ 0

and the phase differences between all nodes become constant hi
– hj¼ const. Further increasing the coupling reduces the phase

differences until complete synchronization of the oscillators,

defined by hi – hj¼ 0, is achieved as K ! 1. The details of

this evolution and specific transitions between the different sta-

ble steady states depend on the structure of the interaction net-

work and the distribution of the natural frequencies.2,16,21,22 An

example illustrating the dynamics of a small random network of

oscillators for various coupling strengths is shown in Fig. 1.

Most studies focus on the transition from incoherent

oscillators moving at their individual frequencies to a par-

tially phase locked state.1–3,11,12 In a variety of technical sys-

tems, however, partial phase coherence is not sufficient for

stable function. For instance, Kuramoto-like dynamics

appear in a second order model describing the frequency

dynamics of power grids17–20,22–25

Mi

d2hi

dt2
þ Di

dhi

dt
¼ Pi þ

XN

j¼1

KAi;j sin hj � hi
� �

: (2)

Here, Mi is the inertia, Di the damping coefficient, and Pi the

power injection at node i. The phases hi(t) describe the state

of rotating machines (generators or motors) and the coupling

their interactions via power transmission lines. In the steady

state dhi
dt
¼ 0, required for stable operation of the power grid,

all machines work at the same frequency. This state is char-

acterized by the same equations that describe a fully phase

locked state in the Kuramoto model. The stability of this

state and how the phase cohesiveness in the network scales

with the coupling strength is an important question.26

Ideally, a universal order parameter would be able to

characterize both the transition to partial and to full phase

locking and the properties of a phase locked state in arbi-

trary, especially finite networks.

III. KURAMOTO ORDER PARAMETERS

To quantitatively study the transitions from an incoher-

ent state to a fully synchronous state, one typically introdu-

ces an order parameter to measure the phase coherence. For

the original all-to-all coupling model, Kuramoto introduced

the complex order parameter2,3

r tð Þeiw tð Þ ¼
1

N

XN

i¼1

eihi ; (3)

where w(t) describes the collective phase of all oscillators

and r(t) the degree of phase coherence. A single measure for

the phase ordering is then given by the long time average of

the absolute value of the order parameter

r2Kuramoto ¼ hjr tð Þeiw tð Þj2it ¼ hr tð Þ2eiw tð Þe�iw tð Þit

¼
1

N2

XN

i;j¼1

ei hi�hjð Þ

* +

t

¼
1

N2

XN

i;j¼1

h cos hi � hj
� �

it : (4)

This order parameter measures the average of the phase

differences of all pairs of oscillators. If the oscillators are

incoherent, the time average vanishes and the order parame-

ter is 0. When a fraction of the oscillators are partially phase

locked, the cosine of their phase differences becomes posi-

tive and does not disappear in the time average; the order

parameter becomes positive.

In the original case for N all-to-all coupled oscillators

with natural frequencies xi following a distribution g(x), the

mean-field theory correctly predicts the transition to partial

phase coherence at the critical coupling Kc1¼ 2/[pg(0)] if

the frequency distribution g is unimodal and symmetric

around zero. For larger coupling strengths K>Kc1,

the order parameter then grows continuously as r Kð Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Kc1=K
p

.2 As such, this order parameter characterizes

the transition from an incoherent state to a partially phase

locked state.

This original order parameter is clearly unsuited when

studying more general interaction networks. One would

compare the phases of two oscillators in the network that are

only interacting indirectly via a (possibly very long) chain of

intermediate oscillators. As such, several adaptations of the
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order parameter have been introduced to study the effect of

the network topology on the synchronization of Kuramoto

oscillators:

The first definition used by Restrepo et al.16,27,28 consid-

ers an intuitively defined local order parameter

ri ¼

�
�
�
�

XN

j¼1

Ai;jhe
ihjit

�
�
�
�
; (5)

for oscillator i, measuring the phase coherence of all neigh-

boring oscillators. A global order parameter is then easily

defined as the average of the local order parameters

rnet ¼

PN
i¼1 ri

PN
i¼1 ki

; (6)

where ki ¼
P

j Ai;j is the degree of node i.

A second definition14,29 adapts the original order param-

eter Eq. (3) weighting each node with its degree

rmf ¼

PN
i¼1 kie

ihi

PN
i¼1 ki

�
�
�
�
�

�
�
�
�
�

* +

t

: (7)

This order parameter ignores the specific network topology

in favor of a mean-field view of network ensembles to sim-

plify analytical calculations.

Finally, a definition of an order parameter to study local

synchronization used in Ref. 15 derives from the original

order parameter Eq. (4), restricting it to the network topology

and only averaging over the phase differences between

directly connected nodes

rlink ¼
1

PN
i¼1 ki

XN

i;j¼1

Ai;jjhe
i hi�hjð Þitj : (8)

The above order parameters work well for their respective

use, for example, to study synchronization analytically in

mean-field network models. However, none of them accurately

captures the whole transition to synchronization, especially in

smaller networks. We illustrate this in Fig. 2 for a small random

network: While rnet clearly captures the transition to full phase

locking at Kc2¼ 1, it is effectively 0 before full phase locking

becomes stable and does not indicate where individual nodes

enter the partially phase locked state for K< 1. Conversely, rlink
describes these transitions but cannot cover the convergence to

full synchrony as rlink ¼ 1 in the fully phase locked state,

regardless of the network topology. Finally, rmf works well to

describe the behavior for a large ensemble of networks but is

clearly unsuited for use with specific, particularly small, net-

works as it ignores the specific network structure and is large

already for weak coupling. It is easy to construct further exam-

ples where, for instance, the mean field order parameter rmf is

non-monotonous with respect to the coupling strength K, even

in the fully phase locked state.

IV. A UNIVERSAL ORDER PARAMETER FOR

COMPLEX NETWORKS

In order to have both a practically applicable and rele-

vant order parameter as well as describe the whole evolution

from an incoherent state to complete synchronization, we

propose a universal network order parameter:

Definition 1. Given a network of coupled Kuramoto

oscillators Eq. (1), phase ordering is measured by

runi ¼
1

PN
i¼1 ki

XN

i;j¼1

Ai;j < ei hi�hjð Þ
� �� �

t

¼
1

PN
i¼1 ki

XN

i;j¼1

Ai;jh cos hi � hj
� �

it: (9)

As rlink, this definition respects the topology of the inter-

action network and considers only phase differences between

FIG. 1. Synchronization in the Kuramoto model. Dynamics of the Kuramoto model for N¼ 10 oscillators with a random interaction network. The phase coher-

ence between neighboring oscillators increases with the coupling strength, eventually leading to full synchrony of all oscillators. (a) Topology of the interac-

tion network, the numbers denote xi of the respective oscillator. (b) For small coupling, the oscillators move (almost) independently with their individual

frequencies (slope). (c) and (d) As the coupling strength increases beyond Kc1¼ 0.1 some oscillators enter a partially phase locked state and their phases evolve

with the same time-averaged frequency. (e) If the coupling strength becomes larger than Kc2¼ 1, all nodes are phase locked and move with the same constant

frequency dhi
dt

¼ 0. (f) and (g) Further increasing the coupling strength reduces the phase differences of the oscillators until complete synchrony hi – hj¼ 0 is

achieved for K!1.
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neighboring nodes. In contrast to rlink, the definition of runi
reduces to the original Kuramoto order parameter Eq. (4) for

a completely connected network as desired. Figure 2(d) illus-

trates the behavior in comparison to the other network order

parameters, showing that it accurately captures the transi-

tions in all stages of phase locking (cf. Fig. 3).

A. Synchronization and stability

The order parameter runi gives a full account of the

emergence of synchrony. It accurately follows both the tran-

sitions to partially and fully phase locked states as well as

the convergence to complete synchrony.

We illustrate this central result in Fig. 2 for a small ran-

dom network. Whenever one of the nodes enters a partially

phase locked state, we observe a strong kink in runi(K).

Hence, we can directly track the growth of phase locked

clusters. In fact, the slope druni/dK diverges when approach-

ing these transition points from the right. We rigorously

prove this result for the transition to full phase locking below

(cf. Theorem 1).

The universal order parameter has further advantages

compared to the alternatives discussed above. First, runi
quantifies the dynamical stability of a phase-locked steady

state (cf. Lemma 1). This becomes most apparent in a ring of

N oscillators with identical natural frequencies, xi¼ 0 for all

i 2{1, 2,…, N}, where all interactions have identical cou-

pling strength K¼ 1. Clearly, in a fully phase locked state all

phase differences between neighboring nodes need to be

identical while the cumulative phase difference around the

ring must be a multiple of 2p.30,31 Under these conditions,

we can characterize the phase locked states by a mode m

describing the total phase change around the ring 2pm. The

individual phases are then given by

h�i ¼
2pim

N
; (10)

FIG. 2. Order parameters to measure phase coherence in networks. Different order parameters measuring the phase coherence in complex networks of

Kuramoto oscillators, describing the transition from a completely incoherent state [K¼ 0, cf. Fig. 1(b)] to full synchrony [K ! 1, cf. Fig. 1(g)]. None of the

order parameters used in the literature rnet, rmf, and rlink captures all transitions. (a) Topology of the interaction network, cf. Fig. 1(a). (b) rnet is almost 0 until

the fully phase locked state becomes stable at K¼ 1. It fails to capture transitions in the partially phase locked regime. (c) In contrast, rlink captures the transi-

tions in the partially phase locked regime well. However, rlink ¼ 1 in the fully phase locked state for K� 1 and does not capture the convergence to complete

synchrony. (d) rmf measures globally averaged phase coherence. It fails to accurately represent the incoherent and partially phase locked state with respect to

the actual network topology, especially for small networks. (e) Our universal order parameter runi accurately reflects the degree of phase coherence in all stages

of synchronization. All results show the long time limit of the order parameter starting from identical initial conditions hi¼ 0; the black dashed lines mark tran-

sitions where single nodes enter a (partially) phase locked state.

FIG. 3. A universal order parameter. None of the order parameters used in the literature rnet, rmf, and rlink capture all transitions. Following the observations in

Fig. 2, rnet fails to capture transitions in the partially phase locked regime. It also fails to describe phase coherence for some small networks, most easily seen

for just two connected oscillators. rlink does not capture the transition to complete synchrony and, since rlink ¼ 1 in the fully phase locked state, it does not clas-

sify stability. rmf does not reflect the phase ordering in networks for partially or fully phase locked states, since it measures global phase coherence. As such, it

does not represent stability of the phase locked steady states which depends on local phase differences and is not suited for small networks. The order parame-

ter runi accurately reflects the transitions for all stages of synchronization and correctly classifies stability of different phase locked states in arbitrary, even

small networks.
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with m 2 �N=2;�N=2þ 1;…;N=2f g, illustrated for m� 0

in Fig. 4. Here and in the following, we use an asterisk * to

denote a phase locked steady state h�i of the Kuramoto model

Eq. (1).

The phase locked states with jh�i � h�i�1j < p=2, that

means m 2 f–N/4, N/4g, are linearly stable, and the remaining

states are unstable. Our order parameter runi reflects the linear

stability of these different steady states - the state with perfectly

aligned phases (m¼ 0) is most stable and has runi ¼ 1. All other

states have larger phase differences, which impede dynamical

stability, and consequently lower values of runi. This information

is completely lost for the alternatives rlink and rmf, the first one

being identically one for all phase-locked states and the second

one being one for the fully aligned state and zero otherwise.

The classification of stability is due to the fact that runi
Eq. (9) counts only the phase differences in the stable

region as positive contributions, i.e., when jh�i � h�j j < p=2.
As the stability of a phase locked state is directly related to

these phase differences, with phase differences close to 0

corresponding to more stable states, the order parameter

directly reflects the systems stability of any phase locked

state, relevant, for example, for applications to power grids.

A further advantage of runi for the analysis of phase-

locked states is monotonicity (cf. Theorem 2). Intuitively,

we expect that an increase in the coupling K leads to a stron-

ger alignment of the phases and thus to an increase in the

order parameter. This expectation can be violated for the

mean-field order parameter rmf, as it measures global align-

ment, but an increase in the coupling acts only locally on the

links. In contrast, we rigorously prove below that the order

parameter runi is monotonic in the coupling strength K for a

phase-locked steady state.

B. Analytical results

To formalize these observations, first consider the linear

stability of a phase locked state h� for K�Kc,2: A small per-

turbation n around the steady state, hj ¼ h�j þ nj, evolves as

d

dt
n ¼ JnþO n2

� �

; (11)

where we make use of vector notation n ¼ n1;…; nNð ÞT . The
Jacobian matrix J quantifies the linear stability of a phase-

locked steady state. It always has one trivial eigenvalue

k1¼ 0 with eigenvector v1 ¼ 1; 1;…; 1ð ÞT, representing a

global uniform shift of all phases which does not affect the

phase-locking of the nodes. In a stable phase locked state, all

other eigenvalues are negative 0 > k2 � k3 � � � � � kN . We

denote the associated eigenvectors as v2;…;vN .
We can then formalize the above observations about runi

in the following theorems:

Theorem 1. Given a network of coupled Kuramoto oscil-

lators Eq. (1) with
P

i xi ¼ 0 and x � v2 6¼ 0, the derivative of

the order parameter runi Eq. (9) diverges when the fully phase

locked state becomes unstable at the critical coupling Kc2

druni=dK ! 1 for K ! Kþ
c2 :

Theorem 2. Given a network of coupled Kuramoto

oscillators Eq. (1) with
P

i xi ¼ 0, in a fully phase locked

regime K>Kc2 the order parameter runi Eq. (9) is strictly

larger than zero for every stable phase locked state and

increases monotonically with increasing K.

In the remainder of this section, we provide the proof

for these theorems with the help of two lemmas, relating the

order parameter to the eigenvalues of the Jacobian:

Lemma 1. Given a network of coupled Kuramoto oscil-

lators Eq. (1) with
P

i xi ¼ 0 and K�Kc2 in the stable

phase locked state, the order parameter runi Eq. (9) is given

by the negative trace of the Jacobian J

runi ¼ �
1

K
PN

i¼1 ki
tr Jð Þ

¼ �
1

K
PN

i¼1 ki

XN

j¼2

kj: (12)

Proof. Explicit calculation of the Jacobian matrix J in

Eq. (11) yields

Ji;j ¼ KAi;j cos ðh
�
i � h�j Þ for i 6¼ j;

Ji;i ¼ �K
XN

j¼1

Ai;j cos ðh
�
i � h�j Þ: (13)

The lemma then follows directly by calculating the trace.

The second equality follows from the fact that the largest

eigenvalue of J is k1¼ 0. �

FIG. 4. Order parameters and stability. Steady states in a ring network with N¼ 10 nodes and the corresponding values of the different order parameters (shifted

horizontally for better visibility). The state m¼ 0 is the most stable as the phase differences between neighboring nodes are the smallest. The phase locked states

become more unstable with increasing m. rmf and rlink do not provide information about the stability of the steady state, being either zero for most of the states or

identical to one for all phase locked states, respectively. Our universal order parameter runi accurately reflects the stability of the different states.
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Given that the eigenvalues of the Jacobian k2,…,kN< 0 are

all negative for a stable phase locked state, K>Kc2, it immedi-

ately follows that the order parameter runi must be positive.

To finish proving the theorems above, we now also

relate the derivative druni/dK to the eigenvalues k1,…, kN of

the Jacobian matrix and their corresponding eigenvectors

v1;…;vN:
Lemma 2. Given a network of coupled Kuramoto oscillators

Eq. (1) with
P

ixi ¼ 0 and K�Kc2, the derivative of the order

parameter with respect to the coupling strength is given by

druni

dK
¼

2

K2
PN

i¼1

ki

XN

n¼2

1

�kn
vn � xð Þ

2 � 0: (14)

Proof. Consider a global change of the coupling strength

K0 ¼ K þ j. This perturbation induces a small change of the

steady state phases of the network, h�m ! h0m ¼ h�m þ nm.

Expanding the steady state condition

0 ¼ xi þ K þ jð Þ
XN

m¼1

Ai;m sin h�m þ nm � h�i � ni
� �

;

to leading order in j and the nm yields

0 ¼ j
XN

m¼1

Ai;m sin h�m � h�i
� �

þ
XN

m¼1

Ji;mnm

)
XN

m¼1

Ji;mnm ¼ �
j

2

XN

‘;m¼1

A‘;m sin h�m � h�‘
� �

di;‘ � di;mð Þ;

for all i 2 {1,…, N} using the definition of the Jacobian Eq.

(13) and the Kronecker d symbol. In vectorial notation, this

set of equations can be written as

Jn ¼ �
j

2

XN

‘;m¼1

A‘;m sin h�m � h�‘
� �

q ‘;mð Þ; (15)

where we define the vector q ‘;mð Þ, whose ith component is

given by q ‘;mð Þ;i ¼ di;‘ � di;m. The matrix J is singular, but the

vectors q ‘;mð Þ are orthogonal to its kernel [v1 ¼ 1; 1;…; 1ð ÞT]
such that we can solve Eq. (15) using the Moore-Penrose

pseudo-inverse Jþ. Decomposing J into eigenvalues and

eigenstates, we thus obtain

n ¼ �
j

2

XN

‘;m¼1

A‘;m sin h�m � h�‘
� �

Jþq ‘;mð Þ

¼ �
j

2

XN

‘;m¼1

XN

n¼2

A‘;m sin h�m � h�‘
� � 1

kn
vn � q ‘;mð Þð Þvn:

We then find for the change of the phases

d hj � hi
� �

dK
¼ q j;ið Þ � lim

j!0

h K þ jð Þ � h Kð Þ

j
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼n=j

¼ �
1

2

XN

‘;m¼1

A‘;m sin h�m � h�‘
� �

�
XN

n¼2

1

kn
q ‘;mð Þ � vnð Þ q j;ið Þ � vnð Þ:

Hence, the derivative of the order parameter is given by

druni

dK
¼

1

XN

i¼1

ki

XN

i;j¼1

Ai;j

d cos h�i � h�j
� �

dK

¼
1

XN

i¼1

ki

XN

i;j¼1

Ai;j sin h�i � h�j
� � d hj � hi

� �

dK

¼
1

2
XN

i¼1

ki

XN

n¼2

1

�kn

XN

i;j¼1

Ai;j sin h�i � h�j
� �

q j;ið Þ � vnð Þ

2

4

3

5

2

:

Now, we use the steady state condition to simplify this expres-

sion. We write q j;ið Þ � vn ¼ vn;j � vn;i, where vn;j denotes the

jth component of the vector vn and we obtain

XN

i;j¼1

Ai;j sin h�i � h�j
� �

q j;ið Þ � vnð Þ

¼
XN

j¼1

vn;j

XN

i¼1

Ai;j sin h�i � h�j
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼�xj=K

�
XN

i¼1

vn;i

XN

i¼j

Ai;j sin h�i � h�j
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼þxi=K

¼ �
2

K
vn � x : (16)

The derivative of the order parameter then becomes

druni

dK
¼

2

K2
PN

i¼1

ki

XN

n¼2

1

�kn
vn � xð Þ

2;

finishing the proof of Lemma 2. �

For any stable steady state, we have kn< 0 for all n 2
{2,…, N} such that the slope is non-negative. It can become

zero only if vn � x ¼ 0 for all n 2 {2,…, N}. As the eigen-

vectors form an orthonormal basis, this would imply that x

is parallel to v1. As we assume
P

j xj ¼ 0, this is only possi-

ble if x ¼ 0 and we have druni/dK> 0 for K>Kc2.

Finally, as K ! Kþ
c2 from above the phase locked state

becomes unstable with k2 ! 0. With the assumption

x � v2 6¼ 0, it follows that the derivative diverges, conclud-

ing the proofs for both theorems.

C. Extension to general coupling functions

The proposed order parameter provides a measure for

the phase coherence in any network of phase oscillators,

independent of the coupling function. We have derived the

above analytical results specifically for the most common

model, Kuramoto phase oscillators. The proofs relied on the

fact that the order parameter directly involves cos hj � hi
� �
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that also appears in the Jacobian matrix of the system. Thus,

while the results are not, in general, valid for arbitrary cou-

pling functions, the above arguments can in many cases be

extended to other common models of phase oscillators.

In particular, we consider the second order Kuramoto

model Eq. (2) as an application of a related system describ-

ing the frequency dynamics of power grids. Since the condi-

tion describing the steady operating state [Eq. (2) with

derivatives set to 0] is exactly identical to that describing a

fully phase locked state in the first order Kuramoto model,22

the arguments given in the proof of Lemma 2 hold without

modifications. The new order parameter runi describes the

phase coherence and increases with the coupling strength in

the phase locked state also in the second order model.

Similarly, the order parameter will always be positive. While

the order parameter is not given directly by the trace of the

Jacobian of the second order model, it is still closely related

to its Eigenvalues, since the Jacobian of the first order sys-

tem is a sub-block of the second order Jacobian. For exam-

ple, it is under certain conditions possible to easily express

the Eigenvalues of the second order system in terms of the

first order Eigenvalues.22 In these cases, this relation directly

translates to the order parameter as well.

Similarly, the Kuramoto-Sakaguchi-model32 is a com-

mon modification, introducing an off-set in the coupling

function sin hj � hi � a
� �

. In this case, Lemma 1 can be

adapted with an additional factor 1= cos að Þ, easily seen by

direct calculation. However, depending on the topology of

the interaction network, the existence of frustrated states33

means that an increase in the coupling strength does not nec-

essarily result in stronger phase coherence. As such, druni/

dK> 0 cannot be expected to hold. The new order parameter

runi nonetheless provides a way to quantify the phase coher-

ence of such systems, even if they cannot reach full

synchrony.

V. CONCLUSION

Kuramoto oscillators are the prototypical systems used

to study the synchronization behavior of limit cycle oscilla-

tors. The order parameters introduced to study this synchro-

nization capture different aspects of the transition to

synchrony. None of the order parameters previously sug-

gested for Kuramoto oscillators on complex networks

describes all transitions to partial and full phase locking as

well as the convergence to full synchrony in arbitrary

networks.

Here, we have proposed a universal order parameter

accurately describing the phase coherence in networks of

phase oscillators. This order parameter recovers the original

Kuramoto order parameter for a fully connected network of

oscillators. We have analytically shown that the slope of the

order parameter diverges when the fully phase locked state

becomes stable, accurately marking this transition even in

small networks. For larger coupling strengths, a monotonic

increase reflects the slow convergence to complete syn-

chrony and directly relates to the stability of the phase

locked state, important, for example, for applications to

power grid models where a fully phase locked state is

required for stable operation.
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