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We analyze the properties of order parameters measuring synchronization and phase locking in
complex oscillator networks. First, we review network order parameters previously introduced and
reveal several shortcomings: none of the introduced order parameters capture all transitions from
incoherence over phase locking to full synchrony for arbitrary, finite networks. We then introduce
an alternative, universal order parameter that accurately tracks the degree of partial phase locking
and synchronization, adapting the traditional definition to account for the network topology and its
influence on the phase coherence of the oscillators. We rigorously prove that this order parameter
is strictly monotonously increasing with the coupling strength in the phase locked state, directly
reflecting the dynamic stability of the network. Furthermore, it indicates the onset of full phase
locking by a diverging slope at the critical coupling strength. The order parameter may find
applications across systems where different types of synchrony are possible, including biological

networks and power grids. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4995963]

Many dynamical systems in physics, biology, or engi-
neering can be described as coupled phase oscillators,
often in a network with a complex interaction topology.
The prototypical model considered in this context is net-
works of Kuramoto oscillators. To study the synchroni-
zation in such systems, several order parameters have
been introduced, adapting the original Kuramoto order
parameter, defined for all-to-all coupled oscillators, to
complex interaction networks. However, none of the
order parameters manages to fully track the transition
from oscillators moving at their individual frequencies
to full synchronization of the network. Here, we propose
a universal order parameter to study synchronization in
finite networks of phase oscillators, tracking all stages of
synchronization. This order parameter may be used to
study systems where different stages of synchrony are
relevant. Additionally, we rigorously prove several help-
ful qualities, relating the order parameter not only to
the synchrony, but also to the dynamical stability of the
network.

I. INTRODUCTION

Many oscillatory systems enter stable limit cycles as their
dynamic steady state. If such systems are coupled, they often
interact only through their positions along their periodic orbit,
their phases. The simplest prototypical model to describe such
coupled phase oscillators is the celebrated Kuramoto model.'
It characterizes the collective dynamics of a variety of phase
oscillator systems ranging from chemical reactions” and neural

1054-1500/2017/27(7)/073119/7/$30.00

27,073119-1

networks™ to coupled Josephson junctions,’ laser arrays,’” opto-
mechanical systems,” and mean-field quantum systems.”'°

Studies of the Kuramoto model and more general
phase oscillator networks typically focus on the onset of
synchronization between the individual oscillators,'"'!-!?
Starting from the analytical results for the mean field
behavior in the all-to-all coupled Kuramoto model, cor-
rectly predicting the emergence of partial phase locking,
extensions of this result to various network topologies
were developed.'*™'® These extensions often use a similar
methodology and define an adapted order parameter to
analyze the transition to synchrony. Interestingly, none of
these order parameters captures all transitions from the
incoherent to the completely synchronized state for arbi-
trary, finite networks.

Depending on the application, different states of phase
ordering are relevant and a different order parameter is appropri-
ate. Commonly, the onset of partial phase locking has received
most interest.'™ For example, partial phase locking indicates the
growth of number fluctuations in quantum mean-field mod-
els.”'* In contrast, in technical systems such as power grids, a
fully phase locked state is required for stable operation.'” "

We propose a universal order parameter that accurately
reflects the phase coherence of phase oscillators in any net-
work, describing the initial growth of partially phase locked
clusters as well as the convergence to full synchrony. This
order parameter is particularly suited to study the fully phase
locked state as it directly reflects the dynamic stability of this
steady state. It increases monotonically with the coupling
strength, in contrast to previously defined mean field order
parameters.

Published by AIP Publishing.
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Il. PHASE OSCILLATORS AND THE KURAMOTO
MODEL

Limit cycles are ubiquitous as dynamically stable states
in a wide range of systems. When such systems are coupled,
interactions can typically be approximated as interactions
between their phases 0,. The Kuramoto model

do; S
E:wi‘FK;Ai,jSln(ej_ei)y (1)

is one of the simplest models for such coupled phase oscillators.
It describes the dynamics of N oscillators with natural frequen-
cies w; and sinusoidal coupling. The parameter K denotes the
coupling strength of the interactions and A;; € {0, 1} is the
adjacency matrix of the interaction network, describing which
nodes interact with which other nodes. The results easily extend
to inhomogeneous coupling strengths with A;; € R. In many
applications, interactions between individual oscillators are
reciprocal, and in the following, we assume an undirected net-
work, i.e., a symmetric adjacency matrix A;;=A;;. Similarly,
we can without loss of generality consider a co-rotating frame
such that the natural frequencies of the oscillators are centered
around O and we have Zi w; = 0, where the sum runs from 1
to N. In the following, we only consider connected networks, as
otherwise we can treat the connected sub-systems individually.
The dynamics of coupled Kuramoto oscillators depends
strongly on the strength K of the interactions. For small coupling
K, all oscillators rotate (almost) independently with their natural
frequencies ;. In this state, the phases are incoherent. Above
some critical coupling strength K > K.;, a subset of the oscilla-
tors starts to synchronize such that their time averaged frequen-
cies <d7€’>t become identical. The phases of these oscillators then
move together in a partially phase locked state and their phase
differences 0; — 0; are bounded. When the coupling becomes
even stronger, K > K, a fully phase locked state appears. All
oscillators synchronize to a common frequency %’ = const. =0
and the phase differences between all nodes become constant 6;
— 0;= const. Further increasing the coupling reduces the phase
differences until complete synchronization of the oscillators,
defined by 0; — 0;=0, is achieved as K — oo. The details of
this evolution and specific transitions between the different sta-
ble steady states depend on the structure of the interaction net-
work and the distribution of the natural frequencies.”'**"*** An
example illustrating the dynamics of a small random network of
oscillators for various coupling strengths is shown in Fig. 1.
Most studies focus on the transition from incoherent
oscillators moving at their individual frequencies to a par-
tially phase locked state.'"'"'? In a variety of technical sys-
tems, however, partial phase coherence is not sufficient for
stable function. For instance, Kuramoto-like dynamics
appear in a second order model describing the frequency

dynamics of power grids'’—2%-*272
d20; do; - :
M5 +Dif =P+ > KAjsin (0, - 0). ()

J=1

Here, M; is the inertia, D; the damping coefficient, and P; the
power injection at node i. The phases 04f) describe the state
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of rotating machines (generators or motors) and the coupling
their interactions via power transmission lines. In the steady
state dd—et‘ = 0, required for stable operation of the power grid,
all machines work at the same frequency. This state is char-
acterized by the same equations that describe a fully phase
locked state in the Kuramoto model. The stability of this
state and how the phase cohesiveness in the network scales
with the coupling strength is an important question.?

Ideally, a universal order parameter would be able to
characterize both the transition to partial and to full phase
locking and the properties of a phase locked state in arbi-
trary, especially finite networks.

lll. KURAMOTO ORDER PARAMETERS

To quantitatively study the transitions from an incoher-
ent state to a fully synchronous state, one typically introdu-
ces an order parameter to measure the phase coherence. For
the original all-to-all coupling model, Kuramoto introduced
the complex order parameter>

. 1N .
r(t)ell//(f) — NZ eloi ’ (3)
i=1

where /(¢) describes the collective phase of all oscillators
and r(¢) the degree of phase coherence. A single measure for
the phase ordering is then given by the long time average of
the absolute value of the order parameter

Furamor = 0V V%), = (r(1)?eV e~y
1 L.
~(e et
N = .
1 N
:]WZ<C°S (0: = 0))), - 4)
ij=1

This order parameter measures the average of the phase
differences of all pairs of oscillators. If the oscillators are
incoherent, the time average vanishes and the order parame-
ter is 0. When a fraction of the oscillators are partially phase
locked, the cosine of their phase differences becomes posi-
tive and does not disappear in the time average; the order
parameter becomes positive.

In the original case for N all-to-all coupled oscillators
with natural frequencies w; following a distribution g(w), the
mean-field theory correctly predicts the transition to partial
phase coherence at the critical coupling K., =2/[ng(0)] if
the frequency distribution g is unimodal and symmetric
around zero. For larger coupling strengths K>K,|,
the order parameter then grows continuously as r(K) o
V1=K /K.2 As such, this order parameter characterizes
the transition from an incoherent state to a partially phase
locked state.

This original order parameter is clearly unsuited when
studying more general interaction networks. One would
compare the phases of two oscillators in the network that are
only interacting indirectly via a (possibly very long) chain of
intermediate oscillators. As such, several adaptations of the
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FIG. 1. Synchronization in the Kuramoto model. Dynamics of the Kuramoto model for N = 10 oscillators with a random interaction network. The phase coher-
ence between neighboring oscillators increases with the coupling strength, eventually leading to full synchrony of all oscillators. (a) Topology of the interac-
tion network, the numbers denote ; of the respective oscillator. (b) For small coupling, the oscillators move (almost) independently with their individual
frequencies (slope). (c) and (d) As the coupling strength increases beyond K. = 0.1 some oscillators enter a partially phase locked state and their phases evolve
with the same time-averaged frequency. (e) If the coupling strength becomes larger than K, = 1, all nodes are phase locked and move with the same constant

do, _

frequency
achieved for K — oo.

order parameter have been introduced to study the effect of
the network topology on the synchronization of Kuramoto
oscillators:

The first definition used by Restrepo et al.'®*"® consid-
ers an intuitively defined local order parameter

N
i0;
ZAiJ<e />t
=T

for oscillator i, measuring the phase coherence of all neigh-
boring oscillators. A global order parameter is then easily
defined as the average of the local order parameters

Iy =

) &)

Tnet = (6)
where k; = Zj A;; is the degree of node i.

A second definition'*?? adapts the original order param-
eter Eq. (3) weighting each node with its degree

Sy kie™
i .
>z ki '

This order parameter ignores the specific network topology
in favor of a mean-field view of network ensembles to sim-
plify analytical calculations.

Finally, a definition of an order parameter to study local
synchronization used in Ref. 15 derives from the original
order parameter Eq. (4), restricting it to the network topology
and only averaging over the phase differences between
directly connected nodes

Fmf =

)

1 N i(0—0;
Fink = —x—— Ai.j\<€l( : ’)> B (®)
Zi'vzl kii.JZ::l t

The above order parameters work well for their respective
use, for example, to study synchronization analytically in

0. (f) and (g) Further increasing the coupling strength reduces the phase differences of the oscillators until complete synchrony 0; — 0;=0 is

mean-field network models. However, none of them accurately
captures the whole transition to synchronization, especially in
smaller networks. We illustrate this in Fig. 2 for a small random
network: While 7, clearly captures the transition to full phase
locking at K., =1, it is effectively O before full phase locking
becomes stable and does not indicate where individual nodes
enter the partially phase locked state for K < 1. Conversely, 1
describes these transitions but cannot cover the convergence to
full synchrony as r,x =1 in the fully phase locked state,
regardless of the network topology. Finally, r,¢ works well to
describe the behavior for a large ensemble of networks but is
clearly unsuited for use with specific, particularly small, net-
works as it ignores the specific network structure and is large
already for weak coupling. It is easy to construct further exam-
ples where, for instance, the mean field order parameter 7, is
non-monotonous with respect to the coupling strength K, even
in the fully phase locked state.

IV. AUNIVERSAL ORDER PARAMETER FOR
COMPLEX NETWORKS

In order to have both a practically applicable and rele-
vant order parameter as well as describe the whole evolution
from an incoherent state to complete synchronization, we
propose a universal network order parameter:

Definition 1. Given a network of coupled Kuramoto
oscillators Eq. (1), phase ordering is measured by

. ,
Tuni = —v—— A,’ '<§R(€l(0i70’))>
S ki l,/z::l ’ t

1 N
— W ZA,»,,( cos (0; — 0,)),.
i=1"ij=1

As rink, this definition respects the topology of the inter-
action network and considers only phase differences between

®
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FIG. 2. Order parameters to measure phase coherence in networks. Different order parameters measuring the phase coherence in complex networks of
Kuramoto oscillators, describing the transition from a completely incoherent state [K = 0, cf. Fig. 1(b)] to full synchrony [K — oo, cf. Fig. 1(g)]. None of the
order parameters used in the literature r,e, 7ims, and ry;y captures all transitions. (a) Topology of the interaction network, cf. Fig. 1(a). (b) 7 is almost O until
the fully phase locked state becomes stable at K = 1. It fails to capture transitions in the partially phase locked regime. (c) In contrast, ry;, captures the transi-
tions in the partially phase locked regime well. However, rj;,c = 1 in the fully phase locked state for K > 1 and does not capture the convergence to complete
synchrony. (d) r,s measures globally averaged phase coherence. It fails to accurately represent the incoherent and partially phase locked state with respect to
the actual network topology, especially for small networks. (¢) Our universal order parameter r,,; accurately reflects the degree of phase coherence in all stages
of synchronization. All results show the long time limit of the order parameter starting from identical initial conditions 0; = 0; the black dashed lines mark tran-
sitions where single nodes enter a (partially) phase locked state.

neighboring nodes. In contrast to 7y, the definition of ryy;
reduces to the original Kuramoto order parameter Eq. (4) for
a completely connected network as desired. Figure 2(d) illus-
trates the behavior in comparison to the other network order
parameters, showing that it accurately captures the transi-
tions in all stages of phase locking (cf. Fig. 3).

A. Synchronization and stability

The order parameter r, gives a full account of the
emergence of synchrony. It accurately follows both the tran-
sitions to partially and fully phase locked states as well as
the convergence to complete synchrony.

We illustrate this central result in Fig. 2 for a small ran-
dom network. Whenever one of the nodes enters a partially
phase locked state, we observe a strong kink in ry,;(K).
Hence, we can directly track the growth of phase locked
clusters. In fact, the slope dry,;/dK diverges when approach-
ing these transition points from the right. We rigorously

prove this result for the transition to full phase locking below
(cf. Theorem 1).

The universal order parameter has further advantages
compared to the alternatives discussed above. First, 7y
quantifies the dynamical stability of a phase-locked steady
state (cf. Lemma 1). This becomes most apparent in a ring of
N oscillators with identical natural frequencies, w; =0 for all
i €{1, 2,..., N}, where all interactions have identical cou-
pling strength K = 1. Clearly, in a fully phase locked state all
phase differences between neighboring nodes need to be
identical while the cumulative phase difference around the
ring must be a multiple of 273" Under these conditions,
we can characterize the phase locked states by a mode m
describing the total phase change around the ring 27m. The
individual phases are then given by

partial
phase locking

full
phase locking

2mim
0F = 10
’ N (10)
complete | classifies finite
synchrony | stability | networks

T'net X v
Tlink v v
'mf X v
Tuni v v

LLAX LS

v
X
X
v

X
v
X
v

FIG. 3. A universal order parameter. None of the order parameters used in the literature rpe;, 'mg, and i capture all transitions. Following the observations in
Fig. 2, e fails to capture transitions in the partially phase locked regime. It also fails to describe phase coherence for some small networks, most easily seen
for just two connected oscillators. 7y, does not capture the transition to complete synchrony and, since r; = 1 in the fully phase locked state, it does not clas-
sify stability. s does not reflect the phase ordering in networks for partially or fully phase locked states, since it measures global phase coherence. As such, it
does not represent stability of the phase locked steady states which depends on local phase differences and is not suited for small networks. The order parame-
ter ry,; accurately reflects the transitions for all stages of synchronization and correctly classifies stability of different phase locked states in arbitrary, even
small networks.



073119-5 Schroder, Timme, and Witthaut

stable

Chaos 27, 073119 (2017)

unstable

FIG. 4. Order parameters and stability. Steady states in a ring network with N = 10 nodes and the corresponding values of the different order parameters (shifted
horizontally for better visibility). The state m = 0 is the most stable as the phase differences between neighboring nodes are the smallest. The phase locked states
become more unstable with increasing m. r,¢ and ry;, do not provide information about the stability of the steady state, being either zero for most of the states or
identical to one for all phase locked states, respectively. Our universal order parameter r,,; accurately reflects the stability of the different states.

with m € {-N/2,-N/2+1,...,N/2}, illustrated for m >0
in Fig. 4. Here and in the following, we use an asterisk * to
denote a phase locked steady state 0 of the Kuramoto model
Eq. (1).

The phase locked states with |07 — 07 || < m/2, that
means m € {-N/4, N/4}, are linearly stable, and the remaining
states are unstable. Our order parameter r,,; reflects the linear
stability of these different steady states - the state with perfectly
aligned phases (= 0) is most stable and has r,,; = 1. All other
states have larger phase differences, which impede dynamical
stability, and consequently lower values of r,,;. This information
is completely lost for the alternatives ry;, and 7, the first one
being identically one for all phase-locked states and the second
one being one for the fully aligned state and zero otherwise.

The classification of stability is due to the fact that r;
Eq. (9) counts only the phase differences in the stable
region as positive contributions, i.e., when |0; — 07| < m/2.
As the stability of a phase locked state is directly related to
these phase differences, with phase differences close to 0
corresponding to more stable states, the order parameter
directly reflects the systems stability of any phase locked
state, relevant, for example, for applications to power grids.

A further advantage of ry,; for the analysis of phase-
locked states is monotonicity (cf. Theorem 2). Intuitively,
we expect that an increase in the coupling K leads to a stron-
ger alignment of the phases and thus to an increase in the
order parameter. This expectation can be violated for the
mean-field order parameter ., as it measures global align-
ment, but an increase in the coupling acts only locally on the
links. In contrast, we rigorously prove below that the order
parameter r,,; is monotonic in the coupling strength K for a
phase-locked steady state.

B. Analytical results

To formalize these observations, first consider the linear
stability of a phase locked state 0" for K > K,.,: A small per-
turbation £ around the steady state, 0; = 0;‘ + ¢, evolves as

d _ 2
&é‘—Jéﬂo(c), an

where we make use of vector notation & = (&4, ..., éN)T. The
Jacobian matrix J quantifies the linear stability of a phase-

locked steady state. It always has one trivial eigenvalue
J1=0 with eigenvector v; = (1,1,...,1)", representing a
global uniform shift of all phases which does not affect the
phase-locking of the nodes. In a stable phase locked state, all
other eigenvalues are negative 0 > /1, > A3 > --- > Ay. We
denote the associated eigenvectors as vs, ..., Uy.

We can then formalize the above observations about r;
in the following theorems:

Theorem 1. Given a network of coupled Kuramoto oscil-
lators Eq. (1) with ), w; = 0 and o - v, # 0, the derivative of
the order parameter r,,; Eq. (9) diverges when the fully phase
locked state becomes unstable at the critical coupling K .,

dryi/dK — oo for K — KJ.

Theorem 2. Given a network of coupled Kuramoto
oscillators Eq. (1) with Y. w; = 0, in a fully phase locked
regime K> K., the order parameter r,,; Eq. (9) is strictly
larger than zero for every stable phase locked state and
increases monotonically with increasing K.

In the remainder of this section, we provide the proof
for these theorems with the help of two lemmas, relating the
order parameter to the eigenvalues of the Jacobian:

Lemma 1. Given a network of coupled Kuramoto oscil-
lators Eq. (1) with Y, w; =0 and K>K,, in the stable
phase locked state, the order parameter r,,; Eq. (9) is given
by the negative trace of the Jacobian J

1
i
K ki

l N
S 12
K562 4

i

)

Tuni =

Proof. Explicit calculation of the Jacobian matrix J in
Eq. (11) yields

Ji‘j:KA,‘_jCOS(H?—é)}F) for l7é./7
N

JI'J' = —KZA[JCOS (61* — 67) (13)
Jj=1

The lemma then follows directly by calculating the trace.
The second equality follows from the fact that the largest
eigenvalue of J is 4; =0. O
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Given that the eigenvalues of the Jacobian A,,...,Ay < 0 are
all negative for a stable phase locked state, K > K, it immedi-
ately follows that the order parameter r,,,; must be positive.

To finish proving the theorems above, we now also
relate the derivative dr,;/dK to the eigenvalues 4,..., Ay of
the Jacobian matrix and their corresponding eigenvectors
V1y..., UN:

Lemma 2. Given a network of coupled Kuramoto oscillators
Eq. (1) with Y, w; = 0 and K > K 5, the derivative of the order
parameter with respect to the coupling strength is given by
dryni 2 X 5
T 22 Z; )»n(v” o)’ > 0. (14)

K ki "
i=1

Proof. Consider a global change of the coupling strength
K’ = K + . This perturbation induces a small change of the
steady state phases of the network, 0 — 0, =0, +&,.
Expanding the steady state condition

N
0=w;+ (K+x) ZAi,m sin (0:;1 + & — 0? - éi)v
m=1

to leading order in x and the ¢, yields

0= KZA, m sm — 0* + Z‘Il mém

m=1
= ZJi,mém =
m=1

—— Z Apm sm
Im 1
for all i € {1,..., N} using the definition of the Jacobian Eq.
(13) and the Kronecker 6 symbol. In vectorial notation, this
set of equations can be written as

- 0;)(515 - 5i.m)a

= —= Z Apm SlIl Gz)q(lvm>7 (15)

/ml

where we define the vector ¢ ,,, whose ith component is
given by gy, ; = 0i¢ — dim. The matrix J is singular, but the

m), ; | T
Vectors ¢y, are orthogonal to its kernel [v; = (1,1,...,1)"]
such that we can solve Eq. (15) using the Moore-Penrose
pseudo-inverse J©. Decomposing J into eigenvalues and
eigenstates, we thus obtain

—_=" ZAM sin (0, — 0;)J g4 m)
Zm 1
K N N
= -3 EAgm Sln 9* — 9*) ('Un “q(t,m))Vn-
{,m=1n=2

We then find for the change of the phases

d(o; —0:;) _ 0(K + ) — 0(K)
Ko K
—&/x
|
=—— ZA/‘,,, sin (an - 0;)
2f,m:l
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Hence, the derivative of the order parameter is given by

dcos (0* — 0;‘)

ZA"J dll<

dryni o

1 d(0,— 0
:N—ZAI»Jsm(Hi—Hj)%

k, ij=1
1

2Zk

ZA’J sin 9* 9*)( )" Un)

v

Now, we use the steady state condition to simplify this expres-
sion. We write 4(ji) " Un = Unj — Unis where v,; denotes the
Jjth component of the vector v,, and we obtain

N
ZAfJ sin (0] — 9;)(‘10',1') " Un)
=

N N
= Z’U,w‘ ZAi‘i sin (01* - 0]*)
j=1 i=1

=—w;/K
N N
S0 S s 0 - )
=1 i
=+w;/K
_ _% . (16)

The derivative of the order parameter then becomes

druni 2 XL
Y, Z ;vn
K2 ki "=

i=1

finishing the proof of Lemma 2. O

For any stable steady state, we have 4, <0 for all n €
{2,..., N} such that the slope is non-negative. It can become
zero only if v, - @ =0 for all n € {2,..., N}. As the eigen-
vectors form an orthonormal basis, this would imply that &
is parallel to v;. As we assume Zj w; = 0, this is only possi-
ble if @ = 0 and we have dr,,;/dK >0 for K > K .

Finally, as K — K, from above the phase locked state
becomes unstable with 4, — 0. With the assumption
o - vy # 0, it follows that the derivative diverges, conclud-
ing the proofs for both theorems.

C. Extension to general coupling functions

The proposed order parameter provides a measure for
the phase coherence in any network of phase oscillators,
independent of the coupling function. We have derived the
above analytical results specifically for the most common
model, Kuramoto phase oscillators. The proofs relied on the
fact that the order parameter directly involves cos (Gj — 0,-)
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that also appears in the Jacobian matrix of the system. Thus,
while the results are not, in general, valid for arbitrary cou-
pling functions, the above arguments can in many cases be
extended to other common models of phase oscillators.

In particular, we consider the second order Kuramoto
model Eq. (2) as an application of a related system describ-
ing the frequency dynamics of power grids. Since the condi-
tion describing the steady operating state [Eq. (2) with
derivatives set to 0] is exactly identical to that describing a
fully phase locked state in the first order Kuramoto model,*
the arguments given in the proof of Lemma 2 hold without
modifications. The new order parameter ry, describes the
phase coherence and increases with the coupling strength in
the phase locked state also in the second order model.
Similarly, the order parameter will always be positive. While
the order parameter is not given directly by the trace of the
Jacobian of the second order model, it is still closely related
to its Eigenvalues, since the Jacobian of the first order sys-
tem is a sub-block of the second order Jacobian. For exam-
ple, it is under certain conditions possible to easily express
the Eigenvalues of the second order system in terms of the
first order Eigenvalues.? In these cases, this relation directly
translates to the order parameter as well.

Similarly, the Kuramoto-Sakaguchi-model** is a com-
mon modification, introducing an off-set in the coupling
function sin (Gj -0, — oc). In this case, Lemma 1 can be
adapted with an additional factor 1/ cos (), easily seen by
direct calculation. However, depending on the topology of
the interaction network, the existence of frustrated states>>
means that an increase in the coupling strength does not nec-
essarily result in stronger phase coherence. As such, dry,/
dK > 0 cannot be expected to hold. The new order parameter
Funi NOnetheless provides a way to quantify the phase coher-
ence of such systems, even if they cannot reach full
synchrony.

V. CONCLUSION

Kuramoto oscillators are the prototypical systems used
to study the synchronization behavior of limit cycle oscilla-
tors. The order parameters introduced to study this synchro-
nization capture different aspects of the transition to
synchrony. None of the order parameters previously sug-
gested for Kuramoto oscillators on complex networks
describes all transitions to partial and full phase locking as
well as the convergence to full synchrony in arbitrary
networks.

Here, we have proposed a universal order parameter
accurately describing the phase coherence in networks of
phase oscillators. This order parameter recovers the original
Kuramoto order parameter for a fully connected network of
oscillators. We have analytically shown that the slope of the
order parameter diverges when the fully phase locked state
becomes stable, accurately marking this transition even in
small networks. For larger coupling strengths, a monotonic
increase reflects the slow convergence to complete syn-
chrony and directly relates to the stability of the phase
locked state, important, for example, for applications to

Chaos 27, 073119 (2017)

power grid models where a fully phase locked state is
required for stable operation.
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