000836588 001__ 836588
000836588 005__ 20240610120608.0
000836588 0247_ $$2doi$$a10.1021/jacs.7b05339
000836588 0247_ $$2ISSN$$a0002-7863
000836588 0247_ $$2ISSN$$a1520-5126
000836588 0247_ $$2WOS$$aWOS:000406172900051
000836588 037__ $$aFZJ-2017-05663
000836588 082__ $$a540
000836588 1001_ $$0P:(DE-HGF)0$$aGe, Zhen-Hua$$b0
000836588 245__ $$aBoosting the Thermoelectric Performance of (Na,K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering
000836588 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2017
000836588 3367_ $$2DRIVER$$aarticle
000836588 3367_ $$2DataCite$$aOutput Types/Journal article
000836588 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501676646_20083
000836588 3367_ $$2BibTeX$$aARTICLE
000836588 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836588 3367_ $$00$$2EndNote$$aJournal Article
000836588 520__ $$aWe report the high thermoelectric performance of p-type polycrystalline SnSe obtained by the synergistic tailoring of band structures and atomic-scale defect phonon scattering through (Na,K)-codoping. The energy offsets of multiple valence bands in SnSe are decreased after Na doping and further reduced by (Na,K)-codoping, resulting in an enhancement in the Seebeck coefficient and an increase in the power factor to 492 μW m–1 K–2. The lattice thermal conductivity of polycrystalline SnSe is decreased by the introduction of effective phonon scattering centers, such as point defects and antiphase boundaries. The lattice thermal conductivity of the material is reduced to values as low as 0.29 W m–1 K–1 at 773 K, whereas ZT is increased from 0.3 for 1% Na-doped SnSe to 1.2 for 1% (Na,K)-codoped SnSe.
000836588 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000836588 588__ $$aDataset connected to CrossRef
000836588 7001_ $$0P:(DE-HGF)0$$aSong, Dongsheng$$b1
000836588 7001_ $$0P:(DE-HGF)0$$aChong, Xiaoyu$$b2
000836588 7001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b3$$eCorresponding author
000836588 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b4
000836588 7001_ $$0P:(DE-HGF)0$$aQian, Xin$$b5
000836588 7001_ $$0P:(DE-HGF)0$$aZheng, Lei$$b6
000836588 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b7
000836588 7001_ $$0P:(DE-HGF)0$$aQin, Peng$$b8
000836588 7001_ $$0P:(DE-HGF)0$$aFeng, Jing$$b9
000836588 7001_ $$0P:(DE-HGF)0$$aZhao, Li-Dong$$b10
000836588 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.7b05339$$gVol. 139, no. 28, p. 9714 - 9720$$n28$$p9714 - 9720$$tJournal of the American Chemical Society$$v139$$x1520-5126$$y2017
000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.pdf$$yRestricted
000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.gif?subformat=icon$$xicon$$yRestricted
000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836588 909CO $$ooai:juser.fz-juelich.de:836588$$pVDB
000836588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b3$$kFZJ
000836588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b4$$kFZJ
000836588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000836588 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000836588 9141_ $$y2017
000836588 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836588 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2015
000836588 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836588 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836588 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836588 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836588 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836588 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836588 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836588 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836588 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836588 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000836588 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836588 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000836588 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2015
000836588 920__ $$lyes
000836588 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000836588 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000836588 980__ $$ajournal
000836588 980__ $$aVDB
000836588 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000836588 980__ $$aI:(DE-Juel1)PGI-5-20110106
000836588 980__ $$aUNRESTRICTED
000836588 981__ $$aI:(DE-Juel1)ER-C-1-20170209