000836588 001__ 836588 000836588 005__ 20240610120608.0 000836588 0247_ $$2doi$$a10.1021/jacs.7b05339 000836588 0247_ $$2ISSN$$a0002-7863 000836588 0247_ $$2ISSN$$a1520-5126 000836588 0247_ $$2WOS$$aWOS:000406172900051 000836588 037__ $$aFZJ-2017-05663 000836588 082__ $$a540 000836588 1001_ $$0P:(DE-HGF)0$$aGe, Zhen-Hua$$b0 000836588 245__ $$aBoosting the Thermoelectric Performance of (Na,K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering 000836588 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2017 000836588 3367_ $$2DRIVER$$aarticle 000836588 3367_ $$2DataCite$$aOutput Types/Journal article 000836588 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501676646_20083 000836588 3367_ $$2BibTeX$$aARTICLE 000836588 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000836588 3367_ $$00$$2EndNote$$aJournal Article 000836588 520__ $$aWe report the high thermoelectric performance of p-type polycrystalline SnSe obtained by the synergistic tailoring of band structures and atomic-scale defect phonon scattering through (Na,K)-codoping. The energy offsets of multiple valence bands in SnSe are decreased after Na doping and further reduced by (Na,K)-codoping, resulting in an enhancement in the Seebeck coefficient and an increase in the power factor to 492 μW m–1 K–2. The lattice thermal conductivity of polycrystalline SnSe is decreased by the introduction of effective phonon scattering centers, such as point defects and antiphase boundaries. The lattice thermal conductivity of the material is reduced to values as low as 0.29 W m–1 K–1 at 773 K, whereas ZT is increased from 0.3 for 1% Na-doped SnSe to 1.2 for 1% (Na,K)-codoped SnSe. 000836588 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0 000836588 588__ $$aDataset connected to CrossRef 000836588 7001_ $$0P:(DE-HGF)0$$aSong, Dongsheng$$b1 000836588 7001_ $$0P:(DE-HGF)0$$aChong, Xiaoyu$$b2 000836588 7001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b3$$eCorresponding author 000836588 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b4 000836588 7001_ $$0P:(DE-HGF)0$$aQian, Xin$$b5 000836588 7001_ $$0P:(DE-HGF)0$$aZheng, Lei$$b6 000836588 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b7 000836588 7001_ $$0P:(DE-HGF)0$$aQin, Peng$$b8 000836588 7001_ $$0P:(DE-HGF)0$$aFeng, Jing$$b9 000836588 7001_ $$0P:(DE-HGF)0$$aZhao, Li-Dong$$b10 000836588 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.7b05339$$gVol. 139, no. 28, p. 9714 - 9720$$n28$$p9714 - 9720$$tJournal of the American Chemical Society$$v139$$x1520-5126$$y2017 000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.pdf$$yRestricted 000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.gif?subformat=icon$$xicon$$yRestricted 000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.jpg?subformat=icon-180$$xicon-180$$yRestricted 000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.jpg?subformat=icon-640$$xicon-640$$yRestricted 000836588 8564_ $$uhttps://juser.fz-juelich.de/record/836588/files/jacs.7b05339.pdf?subformat=pdfa$$xpdfa$$yRestricted 000836588 909CO $$ooai:juser.fz-juelich.de:836588$$pVDB 000836588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b3$$kFZJ 000836588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b4$$kFZJ 000836588 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ 000836588 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000836588 9141_ $$y2017 000836588 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000836588 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2015 000836588 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000836588 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000836588 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000836588 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000836588 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000836588 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000836588 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000836588 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000836588 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000836588 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000836588 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000836588 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000836588 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2015 000836588 920__ $$lyes 000836588 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0 000836588 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1 000836588 980__ $$ajournal 000836588 980__ $$aVDB 000836588 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000836588 980__ $$aI:(DE-Juel1)PGI-5-20110106 000836588 980__ $$aUNRESTRICTED 000836588 981__ $$aI:(DE-Juel1)ER-C-1-20170209