001     836588
005     20240610120608.0
024 7 _ |a 10.1021/jacs.7b05339
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a WOS:000406172900051
|2 WOS
037 _ _ |a FZJ-2017-05663
082 _ _ |a 540
100 1 _ |a Ge, Zhen-Hua
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Boosting the Thermoelectric Performance of (Na,K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering
260 _ _ |a Washington, DC
|c 2017
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501676646_20083
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report the high thermoelectric performance of p-type polycrystalline SnSe obtained by the synergistic tailoring of band structures and atomic-scale defect phonon scattering through (Na,K)-codoping. The energy offsets of multiple valence bands in SnSe are decreased after Na doping and further reduced by (Na,K)-codoping, resulting in an enhancement in the Seebeck coefficient and an increase in the power factor to 492 μW m–1 K–2. The lattice thermal conductivity of polycrystalline SnSe is decreased by the introduction of effective phonon scattering centers, such as point defects and antiphase boundaries. The lattice thermal conductivity of the material is reduced to values as low as 0.29 W m–1 K–1 at 773 K, whereas ZT is increased from 0.3 for 1% Na-doped SnSe to 1.2 for 1% (Na,K)-codoped SnSe.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Song, Dongsheng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chong, Xiaoyu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zheng, Fengshan
|0 P:(DE-Juel1)165965
|b 3
|e Corresponding author
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 4
700 1 _ |a Qian, Xin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zheng, Lei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 7
700 1 _ |a Qin, Peng
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Feng, Jing
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zhao, Li-Dong
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1021/jacs.7b05339
|g Vol. 139, no. 28, p. 9714 - 9720
|0 PERI:(DE-600)1472210-0
|n 28
|p 9714 - 9720
|t Journal of the American Chemical Society
|v 139
|y 2017
|x 1520-5126
856 4 _ |u https://juser.fz-juelich.de/record/836588/files/jacs.7b05339.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836588/files/jacs.7b05339.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836588/files/jacs.7b05339.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836588/files/jacs.7b05339.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836588/files/jacs.7b05339.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/836588/files/jacs.7b05339.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:836588
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21