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Relation of the Dzyaloshinskii-Moriya interaction to spin currents and to the spin-orbit field
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Starting from the general Berry phase theory of the Dzyaloshinskii-Moriya interaction (DMI) we derive an
expression for the linear contribution of the spin-orbit interaction (SOI). Thereby, we show analytically that at
the first order in SOI DMI is given by the ground-state spin current. We verify this finding numerically by ab

initio calculations in Mn/W(001) and Co/Pt(111) magnetic bilayers. We show that despite the strong SOI from
the 5d heavy metals, DMI is well-approximated by the first order in SOI, while the ground-state spin current is
not. We decompose the SOI-linear contribution to DMI into two parts. One part has a simple interpretation in
terms of the Zeeman interaction between the spin-orbit field and the spin misalignment that electrons acquire in
magnetically noncollinear textures. This interpretation provides also an intuitive understanding of the symmetry
of DMI on the basis of the spin-orbit field and it explains in a simple way why DMI and ground-state spin currents
are related. Moreover, we show that energy currents driven by magnetization dynamics and associated to DMI
can be explained by counter-propagating spin currents that carry energy due to their Zeeman interaction with the
spin-orbit field. Finally, we discuss options to modify DMI by nonequilibrium spin currents excited by electric
fields or light.
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I. INTRODUCTION

Most excitement about spin currents arises from the
prospects to use them to transmit information dissipationlessly
[1], to switch magnetic bits [2,3], and to move domain walls
[4,5]. Therefore, in many cases the generation of spin currents
by applied electric fields, i.e., the spin Hall effect [6], or by
magnetization dynamics, i.e., spin pumping [7], or by laser ex-
citation [8] are considered. However, spin currents exist also in
the absence of applied electric fields, magnetization dynamics
and laser pulses, when the system is in its ground state. These
ground-state spin currents mediate important effects and inter-
actions as well. For example, in magnetic bilayer systems, the
ground-state spin current flowing between the magnetic layer
and the normal metal substate when the magnetization is tilted
away from the easy axis provides the nonlocal contribution to
the magnetic anisotropy torque [9]. Furthermore, the interlayer
exchange coupling between magnetic layers in spin valves is
mediated by ground-state spin currents [10].

Recently, it has been proposed to estimate the
Dzyaloshinskii-Moriya interaction (DMI) from the ground-
state spin current [11]. DMI describes the linear-in-q con-
tribution to the energy dispersion E(q) of spin spirals and
arises in systems with inversion asymmetry and spin-orbit
interaction (SOI) [12,13]. In several spintronics concepts,
DMI plays a central role. Notably, it is a key ingredient
to achieve current-driven domain wall motion at high speed
[4,5] and to stabilize skyrmions [14]. The relation of DMI
to the ground-state spin current also leads to an intuitive
interpretation of DMI as a Doppler shift [11].

Since the computational evaluation of the ground-state spin
current is easier than the usually applied methodology for
the calculation of the DMI coefficients from the q-linear
contribution to the energy dispersion E(q) of spin spirals
[15–18], it has been proposed to use the ground-state spin

*Corresponding author: f.freimuth@fz-juelich.de

currents, for example, to study the dependence of DMI on
strain and voltage [11]. However, the relation between DMI
and ground-state spin current has been derived in the strong
exchange limit and the accuracy of this spin-current approach
to DMI has been demonstrated only in the B20 compounds
Mn1−xFexGe and Fe1−xCoxGe. In Co/Pt magnetic bilayer
systems, SOI is much stronger than in these B20 compounds
and the applicability of the spin-current approach to such
magnetic bilayer systems has not been demonstrated yet.

The description of ferroelectric polarization by the Berry
phase [19], the use of the Berry curvature in the theory
of the anomalous Hall effect [20], and the discovery of
topological insulators are well-known examples for the success
story of the quest for effects of topological and geometrical
origin in band theory. Recently, it has been shown that the
exchange parameters can be expressed in terms of geometrical
properties such as the quantum metrics [21] and that DMI
can be expressed in terms of the mixed Berry curvature
Im〈∂ukn/∂ n̂|∂ukn/∂k〉, where derivatives with respect to the
k point and derivatives with respect to the magnetization
direction n̂ are combined [22–24].

This Berry phase approach expresses DMI directly in
terms of the electronic structure, similar to the spin-current
approach. This is a major advantage of these two approaches
compared to the spin-spiral method, where DMI is extracted
from the q-linear contribution to the energy dispersion E(q)
of spin spirals. While the relation of DMI to other important
spintronics effects is not directly obvious within the spin-spiral
approach, the Berry phase theory of DMI shows how DMI is
related to direct, inverse and thermal spin-orbit torques and to
the twist-torque moments of wave packets [22–24]. Since the
spin-current approach to DMI establishes the connection to the
ground-state spin current, even more insights can be expected
from investigating the relationship between the Berry phase
approach on the one hand and the spin current approach on the
other hand.

In the present paper, we use first-order perturbation theory
to derive expressions for DMI and for the ground-state spin
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current, which are valid at the first order in SOI. Thereby we
find analytically that DMI is given exactly by the ground-state
spin current at the first order in SOI, which clarifies the rela-
tion between the Berry-phase approach and the spin-current
approach to DMI. Tuning the SOI strength in Co/Pt(111)
and Mn/W(001) magnetic bilayers artificially, we confirm
this analytical result numerically by ab initio calculations.
By studying both DMI and ground-state spin current as a
function of SOI strength, we illustrate the limitations of the
spin-current approach to DMI, which breaks down for large
SOI strength. We find that the SOI-linear contribution to
the ground-state spin current consists of two terms, and provide
an intuitive interpretation of both of them. We discover that
one contribution is intimately linked to the misalignment that
conduction electron spins acquire as they traverse magnetically
noncollinear textures. This contribution can be understood
as Zeeman interaction between the spin-orbit field and the
spin misalignment. When the magnetization direction is time-
dependent, the spin misalignment leads to counterpropagating
spin currents, based on which we elucidate the nature of the
energy current that is driven by magnetization dynamics in
systems with DMI [24]. Thereby, our theory exposes the
connections of DMI to other spintronics concepts such as
spin-orbit fields and spin-transfer torque.

This article is structured as follows. In Sec. II, we derive
expressions for the SOI-linear contributions to DMI and to the
ground-state spin current and show that both agree within the
first-order perturbation theory in SOI. In Secs. III A and III B,
we interpret the two contributions to DMI that arise at the first
order in SOI. In Sec. IV, we explain how the ground-state
energy current associated with DMI can be understood from
counter-propagating spin currents driven by magnetization
dynamics. In Sec. V we show that ground-state spin currents
exist for the nonmagnetic Rashba model with zero DMI,
but that these spin currents arise at the third order of SOI.
In Sec. VI, we present ab initio calculations of DMI and
of ground-state spin currents in Mn/W(001) and Co/Pt(111)
magnetic bilayers. In Sec. VII, we conclude with a summary
and outlook, where we also discuss the option to modify DMI
by nonequilibrium spin currents excited by electric fields or
light.

II. FIRST-ORDER CONTRIBUTION OF SOI TO DMI

Due to DMI, the free energy density F (r) at position r

contains a term linear in the gradients of magnetization [22]:

F DMI(r) =
∑

j

Dj (n̂(r)) ·

[

n̂(r) ×
∂ n̂(r)

∂rj

]

, (1)

where Dj (n̂) are the DMI coefficient vectors, which depend
on the magnetization direction n̂(r) in systems where DMI is
anisotropic. The index j runs over the three cartesian directions
x, y, and z.

Within the Berry phase approach, Dj (n̂) is given by

Dj (n̂) =

∫

ddk

(2π )d
∑

n

[f (Ekn)Aknj (n̂) − g(Ekn)Bknj (n̂)],

(2)

where d is the dimension (d = 2 or d = 3), f (Ekn) = [1 +

eβ(Ekn−µ)]−1 is the occupation number of band n at k point
k, g(Ekn) = −kBT ln[1 + e−β(Ekn−µ)] is the contribution of
the state |ukn〉 with band energy Ekn to the grand canonical
potential, T is the temperature, kB is Boltzmann’s constant,
µ is the chemical potential, and β = (kBT )−1. In the mixed
Berry curvature [23],

Bknj (n̂) = −2

[

n̂ × Im

〈

∂ukn

∂ n̂

∣

∣

∣

∣

∂ukn

∂kj

〉]

, (3)

k derivatives are mixed with n̂ derivatives. The twist-torque
moment of wave packets is described by [22]

Aknj (n̂) = −

[

n̂ × Im

〈

∂ukn

∂ n̂

∣

∣

∣

∣

[Ekn − Hk]

∣

∣

∣

∣

∂ukn

∂kj

〉]

, (4)

where Hk is the Hamiltonian in crystal-momentum represen-
tation, i.e., Hk|ukn〉 = Ekn|ukn〉.

In the limit of strong exchange or small SOI, the DMI
coefficient vector Dj can also be determined from the ground-
state spin current Qj [11,25]. When the ground-state spin
current flowing in j direction is defined as

Qj =
h̄

4

∫

ddk

(2π )d
∑

n

f (Ekn)〈ukn|{σ ,vj }|ukn〉, (5)

the DMI coefficient vector can be written as

Dj = − Qj . (6)

Here, vj is the j component of the velocity operator v and
σ = (σx,σy,σz)T is the vector of Pauli spin matrices.

Both Eqs. (2) and (5) express the DMI directly in terms
of the electronic structure, which is a major advantage over
the spin-spiral method, where DMI is extracted from the q-
linear term in the energy dispersion [15–18]. However, Eqs. (2)
and (5) look very different and the relationship between both
approaches is not clear. Since DMI arises at the first order
in SOI [12], we will use first-order perturbation theory to
determine the SOI-linear contributions to Dj and Qj . This
will facilitate the comparison between the approaches Eqs. (2)
and (5) and elucidate their relationship.

Within Kohn-Sham density functional theory, interacting
many-electron systems are described by the effective single-
particle Hamiltonian

H (r) = −
h̄2

2m
� + V (r) + µBσ · n̂�xc(r)

+
1

2ec2
µBσ · [∇V (r) × v], (7)

where the first term describes the kinetic energy and the second
term is the scalar effective potential. The third term describes
the exchange interaction, where µB is the Bohr magneton,
�xc(r) = 1

2µB
[V eff

minority(r) − V eff
majority(r)] is the exchange field,

V eff
minority(r) is the effective potential of minority electrons, and

V eff
majority(r) is the effective potential of majority electrons. The

last term is the spin-orbit interaction, where e is the elementary
positive charge and c is the velocity of light.

The Hamiltonian in crystal-momentum representation is
given by Hk = e−ik·rHeik·r . We decompose Hk into the spin-
orbit interaction Vk and the Hamiltonian H̄k without SOI, such
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that

Hk = H̄k + Vk. (8)

We introduce the parameter ξ to scale SOI up or down and
consider the modified Hamiltonian

H
ξ

k = H̄k + ξVk. (9)

The DMI coefficient vector Dj of a system described by H
ξ

k

can be written as a power series with respect to ξ :

Dj = ξ D
(1)
j + ξ 2 D

(2)
j + ξ 3 D

(3)
j + · · · , (10)

where D
(1)
j is linear in Vk.

In order to derive an explicit expression for D
(1)
j it is

convenient to rewrite Eq. (2) in terms of Green functions. This
can be achieved by first expressing the k and n̂ derivatives
through the velocity and torque operators, respectively. For
this purpose, we employ h̄v = ∂H/∂k and n̂ × ∂H/∂ n̂ = T

and use perturbation theory in order to rewrite the k and n̂

derivatives in terms of matrix elements of v and T [9,23].
This yields

Aknj = h̄
∑

m�=n

Im

[

〈ukn|T |ukm〉〈ukm|vj |ukn〉

Ekm − Ekn

]

(11)

and

Bknj = −2h̄
∑

m�=n

Im

[

〈ukn|T |ukm〉〈ukm|vj |ukn〉

(Ekm − Ekn)2

]

, (12)

where

T =
i

2
[H̄k,σ ] = −µBσ × n̂�xc (13)

is the torque operator [26]. Subsequently, we apply the identity

Im
∫

dEg(E)
1

E − Ekq + i0+

1

(E − Ekp + i0+)2

= π

[

[g(Ekp) − g(Ekq)]

(Ekp − Ekq)2
+

f (Ekp)

Ekq − Ekp

]

, (14)

which can be proven with the residue theorem and with
the relation g′(E) = f (E). Thereby, we obtain the follow-
ing expression of the DMI coefficients in terms of Green
functions [27]:

Dj =
1

h
Re

∫

ddk

(2π )d

∫

dEg(E)

× Tr

[

T GR
k (E)vj

dGR
k (E)

dE
− T

dGR
k (E)

dE
vjG

R
k (E)

]

,

(15)

where GR
k (E) = h̄[E − Hk + i0+]−1 is the retarded Green

function.
In order to identify the contributions to Eq. (15) that are

linear in SOI, we expand GR
k (E) up to first order in Vk as

follows:

GR
k (E) ≃ ḠR

k (E) +
1

h̄
ḠR

k (E)VkḠ
R
k (E), (16)

where ḠR
k (E) = h̄[E − H̄k + i0+]−1 is the retarded Green

function without SOI. Additionally, we decompose the ve-
locity operator into two parts:

vj = v̄j + vSOI
j , (17)

where v̄j = i[H̄k,rj ]/h̄ and vSOI
j = i[Vk,rj ]/h̄. Inserting

Eqs. (16) and (17) into Eq. (15) and using the relation
h̄∂ḠR

k (E)/∂E = −[ḠR
k (E)]2 we obtain the linear contribution

of SOI to Dj :

D
(1)
j =

−1

2πh̄3 Re
∫

ddk

(2π )d

∫

dEg(E)

× Tr
[

ḠR
k (E)VkḠ

R
k (E)T ḠR

k (E)v̄j Ḡ
R
k (E)

+ ḠR
k (E)T ḠR

k (E)VkḠ
R
k (E)v̄j Ḡ

R
k (E)

+ ḠR
k (E)T ḠR

k (E)v̄j Ḡ
R
k (E)VkḠ

R
k (E)

+ h̄ḠR
k (E)T ḠR

k (E)vSOI
j ḠR

k (E)

− ḠR
k (E)VkḠ

R
k (E)v̄j Ḡ

R
k (E)T ḠR

k (E)

− ḠR
k (E)v̄j Ḡ

R
k (E)VkḠ

R
k (E)T ḠR

k (E)

− ḠR
k (E)v̄j Ḡ

R
k (E)T ḠR

k (E)VkḠ
R
k (E)

− h̄ḠR
k (E)vSOI

j ḠR
k (E)T ḠR

k (E)
]

. (18)

Substituting the torque operator by the commutator of inverse
Green function and Pauli matrices, i.e.,

T = −
ih̄

2

[[

ḠR
k (E)

]−1
,σ

]

, (19)

reduces the number of Green functions in each of the products
by one and leaves us with

D
(1)
j =

−1

4πh̄2 Im
∫

ddk

(2π )d

∫

dEg(E)Tr
[

ḠR
k (E)Vk

× σ ḠR
k (E)v̄j Ḡ

R
k (E) − ḠR

k (E)VkḠ
R
k (E)σ v̄j Ḡ

R
k (E)

+ σ ḠR
k (E)VkḠ

R
k (E)v̄j Ḡ

R
k (E)

− ḠR
k (E)σVkḠ

R
k (E)v̄j Ḡ

R
k (E)

+ σ ḠR
k (E)v̄j Ḡ

R
k (E)VkḠ

R
k (E)

− ḠR
k (E)σ v̄j Ḡ

R
k (E)VkḠ

R
k (E) + h̄σ ḠR

k (E)vSOI
j ḠR

k (E)

− h̄ḠR
k (E)σvSOI

j ḠR
k (E)

− ḠR
k (E)VkḠ

R
k (E)v̄jσ ḠR

k (E)

+ ḠR
k (E)VkḠ

R
k (E)v̄j Ḡ

R
k (E)σ

− ḠR
k (E)v̄j Ḡ

R
k (E)Vkσ ḠR

k (E)

+ ḠR
k (E)v̄j Ḡ

R
k (E)VkḠ

R
k (E)σ

− ḠR
k (E)v̄jσ ḠR

k (E)VkḠ
R
k (E)

+ ḠR
k (E)v̄j Ḡ

R
k (E)σVkḠ

R
k (E)

− h̄ḠR
k (E)vSOI

j σ ḠR
k (E) + h̄ḠR

k (E)vSOI
j ḠR

k (E)σ
]

.

(20)

We first pick out all the terms from Eq. (20) that can
be expressed in terms of the anticommutators {σ ,v̄j } and
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{σ ,vSOI
j }, because we are searching for a relation of the form

of Eq. (6) between DMI and the ground-state spin current
and according to Eq. (5) this spin-current is given in terms
of such anticommutators. The sum of these contributions is
given by

aj =
1

4πh̄2 Im
∫

ddk

(2π )d

∫

dEg(E)

× Tr
[

{σ ,v̄j }
[

ḠR
k (E)

]2
VkḠ

R
k (E)

+ {σ ,v̄j }Ḡ
R
k (E)Vk

[

ḠR
k (E)

]2
+ h̄

{

σ ,vSOI
j

}[

ḠR
k (E)

]2]

=
1

4πh̄
Im

∫

ddk

(2π )d

∫

dEf (E)Tr
[

{σ ,v̄j }Ḡ
R
k (E)Vk

× ḠR
k (E) + h̄

{

σ ,vSOI
j

}

ḠR
k (E)

]

, (21)

where we used integration by parts and the relations
h̄∂ḠR

k (E)/∂E = −[ḠR
k (E)]2 and g′(E) = f (E). Carrying out

the energy integrations with the help of the residue theorem,
we obtain aj = a

(I)
j + a

(II)
j with

a
(I)
j = −

h̄

4
Re

∫

ddk

(2π )d
∑

n,m

f (Ēkn) − f (Ēkm)

Ēkn − Ēkm

× 〈ūkn|{σ ,v̄j }|ūkm〉〈ūkm|Vk|ūkn〉 (22)

and

a
(II)
j = −

h̄

4
Re

∫

ddk

(2π )d
∑

n

f (Ēkn)〈ūkn|
{

σ ,vSOI
j

}

|ūkn〉, (23)

where Ēkn and |ūkn〉 are eigenvalues and eigenfunctions of
the Hamiltonian H̄k without SOI, i.e., H̄k|ūkn〉 = Ēkn|ūkn〉.
Expanding the spin current Qj in Eq. (5) analogously to the
expansion in Eq. (10), we find

aj = − Q
(1)
j , (24)

where Q
(1)
j is the SOI-linear term in

Qj = ξ Q
(1)
j + ξ 2 Q

(2)
j + ξ 3 Q

(3)
j + . . . . (25)

Thus the SOI-linear contribution to DMI generally contains
the ground-state spin current. Eq. (23) differs from Eq. (5) by
the minus sign, by the replacement of the wave functions |ukn〉

by those without SOI, i.e., |ūkn〉, and by the replacement of the
velocity operator by its SOI correction vSOI

j . Since vSOI
j is first

order in SOI, it is obvious that Eq. (23) contributes to − Q
(1)
j .

The second contribution, Eq. (22), arises when first order
perturbation theory is used to add SOI to the wave functions
|ūkn〉 without SOI and when the spin current h̄{σ ,vj }/4 is
evaluated for these perturbed wave functions.

Next, we pick out all terms from Eq. (20) that can be
expressed in terms of the commutators [Vk,σ ]. The sum of
these contributions is given by

bj =
−1

4πh̄2 Im
∫

ddk

(2π )d

∫

dEg(E)

× Tr
[

ḠR
k (E)[Vk,σ ]ḠR

k (E)v̄j Ḡ
R
k (E)

− ḠR
k (E)v̄j Ḡ

R
k (E)[Vk,σ ]ḠR

k (E)
]

=
1

h
Re

∫

ddk

(2π )d

∫

dEg(E)Tr

[

LkḠ
R
k (E)v̄j

∂ḠR
k (E)

∂E

− Lk

∂ḠR
k (E)

∂E
v̄j Ḡ

R
k (E)

]

, (26)

where we defined Lk = −i[Vk,σ ]/2. Using the residue theo-
rem to perform the energy integrations yields

bj =

∫

ddk

(2π )d
[f (Ēkn)Aknj − g(Ēkn)Bknj ], (27)

where

Aknj = h̄
∑

m�=n

Im
〈ūkn|Lk|ūkm〉〈ūkm|v̄j |ūkn〉

Ēkm − Ēkn

(28)

and

Bknj = −2h̄
∑

m�=n

Im
〈ūkn|Lk|ūkm〉〈ūkm|v̄j |ūkn〉

(Ēkn − Ēkm)2
. (29)

Since |ūkn〉 is an eigenstate of the Hamiltonian H̄k without
SOI, we can use

〈ū−kn|L−k|ū−km〉 = −[〈ūkn|Lk|ūkm〉]∗

〈ū−km|v̄j |ū−kn〉 = −[〈ūkm|v̄j |ūkn〉]
∗ (30)

in order to show that A−knj = −Aknj and B−knj = −Bknj .
Therefore, the k integration in Eq. (26) evaluates to zero, i.e.,
bj = 0. Equation (27) strongly resembles Eq. (2). The essential
differences are that in Aknj and Bknj Lk takes the place of T

in Aknj and Bknj and the wave functions, eigenenergies, and
the velocity operator are replaced by those without SOI, i.e., by
|ūkn〉, Ēkn, and v̄j , respectively. Interestingly, the operator Lk

is sometimes used instead of the torque operator T , because
for stationary states in collinear magnets the expectation values
are the same [28]. Clearly, when we replace Lk by T , both
Eqs. (28) and (29) yield zero, because without SOI both DMI
and spin-orbit torque are zero. Since T may be replaced by Lk

in collinear ferromagnets, both Eqs. (28) and (29) yield zero
also with Lk. This is an alternative explanation why bj = 0,
which does not make use of Eq. (30).

Next, we discuss all those remaining terms in Eq. (20) that
contain vSOI

j . They are given by

cj =
−1

2πh̄
Im

∫

ddk

(2π )d

∫

dEg(E)Tr
[

σ ḠR
k (E)vSOI

j ḠR
k (E)

]

=
h̄

2

∫

ddk

(2π )d
∑

n,m

g(Ēkn) − g(Ēkm)

Ēkn − Ēkm

× 〈ūkn|σ |ūkm〉〈ūkm|vSOI
j |ūkn〉. (31)

Using T = i[H̄k,σ ]/2, we can rewrite the terms cj and a
(II)
j

as follows:

cj = −

∫

ddk

(2π )d
∑

n

g(Ēkn)B̃knj (32)

and

a
(II)
j =

∫

ddk

(2π )d
∑

n

f (Ēkn) Ãknj , (33)
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where

Ãknj = h̄
∑

m�=n

Im

[

〈ūkn|T |ūkm〉〈ūkm|vSOI
j |ūkn〉

Ēkm − Ēkn

]

(34)

and

B̃knj = −2h̄
∑

m�=n

Im

[

〈ūkn|T |ūkm〉〈ūkm|vSOI
j |ūkn〉

(Ēkm − Ēkn)2

]

. (35)

Comparing these expressions to those of Aknj and Bknj in
Eqs. (11) and in (12) shows that |ukn〉, Ekn, and vj are replaced
by |ūkn〉, Ēkn, and vSOI

j , respectively. While the contribution

from Ãknj enters Q
(1)
j , the contribution from B̃knj does not.

Finally, the last remaining terms in Eq. (20) are given by

dj =
−1

2πh̄2 Im
∫

ddk

(2π )d

∫

dEg(E)Tr
[

σ ḠR
k (E)Vk

× ḠR
k (E)v̄j Ḡ

R
k (E) + σ ḠR

k (E)v̄j Ḡ
R
k (E)VkḠ

R
k (E)

]

. (36)

Using the relation

v̄j =
i

h̄
[H̄k,rj ] = −i

[[

ḠR
k (E)

]−1
,rj

]

, (37)

we can reduce the number of Green functions in each of the
products by one. This yields

dj =
1

2πh̄
Im

∫

ddk

(2π )d

∫

dEg(E)Tr

[

σ ḠR
k (E)

i

h̄
[Vk,rj ]

× ḠR
k (E) +

i

h̄
[σ ,rj ]ḠR

k (E)VkḠ
R
k (E)

]

. (38)

Substituting i[Vk,rj ]/h̄ = vSOI
j and [σ ,rj ] = 0, we obtain

dj = −cj . (39)

Finally, the SOI-linear contribution to DMI is given by

D
(1)
j = aj + bj + cj + dj = aj = − Q

(1)
j . (40)

Thus Eq. (6) is satisfied in first order of Vk, which is the
main result of this section. An interesting corollary of Eq. (40)
is that ground-state spin currents in nonmagnetic materials
cannot arise at the first order in Vk, because there is no
DMI in nonmagnetic systems. In Sec. III B, we will explicitly
show that in nonmagnetic systems Q

(1)
j = 0. However, in the

presence of SOI ground-state spin currents are possible in
noncentrosymmetric crystals even when they are nonmagnetic,
but these are generated by higher-order terms in the Vk

expansion.

III. INTERPRETATION OF THE

CONTRIBUTIONS a
(I)

j AND a
(II)

j

At first order in SOI, both the DMI coefficient vector D
(1)
j

and the ground-state spin current Q
(1)
j can be decomposed into

two contributions, a
(I)
j and a

(II)
j , according to

D
(1)
j = − Q

(1)
j = a

(I)
j + a

(II)
j , (41)

where a
(I)
j and a

(II)
j are given in Eqs. (22) and in (23), respec-

tively. In the following, we discuss these two contributions in
detail.

A. The contribution a
(I)

j

DMI can be interpreted as a Doppler shift due to the ground-
state spin current Qj [11]. In this interpretation SOI is built
in from the start and the resulting spin current interacts with
the noncollinear magnetic texture resulting in an energy shift.
In the following we discuss a complementary interpretation of
the contribution a

(I)
j to DMI, which emphasizes the role of the

spin-orbit field. In contrast to Ref. [11] we do not include SOI
from the start but instead we will add it later. The Kohn-Sham
Hamiltonian of a spin spiral without SOI is given by

H̄ = −
h̄2

2m
� + V (r) + µB�xc(r)n̂c(r) · σ . (42)

We consider the special case of a flat cycloidal spin spiral with
spin-spiral wave number q propagating along the x direction.
Its magnetization direction is

n̂c(r) = n̂c(x) =





sin(qx)
0

cos(qx)



. (43)

The term µB�xc(r)n̂c(r) · σ in the Hamiltonian in Eq. (42)
can be brought into the more convenient form µB�xc(r)σz by
the transformation

U †(r)µB�xc(r)n̂c(r) · σU (r) = µB�xc(r)σz, (44)

where

U (r) =

(

cos
(

qx

2

)

− sin
(

qx

2

)

sin
(

qx

2

)

cos
(

qx

2

)

)

(45)

for the cycloidal spin-spiral in Eq. (43). Under the transforma-
tion U (r), the Hamiltonian in Eq. (42) turns into [29,30]

H̃ = U †(r)H̄U (r)

=
1

2m
( p + eAeff)2 + V (r) + µB�xc(r)σz +O(q2), (46)

where p = −ih̄∇ and O(q2) summarizes terms of order q2

that we neglect in the following and

Aeff = −
ih̄

e
U †(r)

∂U (r)

∂ r
(47)

is an effective vector potential. For the cycloidal spin-spiral in
Eq. (43) we obtain

Aeff = −
h̄q

2e
σy êx, (48)

where êx is a unit vector pointing in x direction. Up to first
order in q, the transformed Hamiltonian is given by

H̃k ≃ H̄k −
h̄

4
q{σy,v̄x}, (49)

where H̄k = e−ik·rH̄ eik·r is the crystal-momentum represen-
tation of the Hamiltonian of the corresponding magnetically
collinear system:

H̄ = −
h̄2

2m
� + V (r) + µB�xc(r)σz. (50)

The spectrum of Eq. (49) agrees to the spectrum of Eq. (42)
(up to the first order in q) and the eigenvectors of Eq. (42) can
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be obtained from the eigenvectors of Eq. (49) via the unitary
transformation Eq. (45). However, solving the eigenvalue
problem of Eq. (49) is considerably easier than solving the
eigenvalue problem of Eq. (42), in particular when the wave
vector q of the spin-spiral in Eq. (43) is small.

We denote the eigenstates of H̄k by |ūkn〉 and the corre-
sponding eigenenergies by Ēkn. When an electron in band n

at k-point k propagates along the spin-spiral of Eq. (43) it
exerts the torque τ̃ kn on the magnetization. From first-order
perturbation theory, where the second term on the right-hand
side of Eq. (49) acts as perturbation, we obtain

τ̃ kn =
h̄q

2

∑

m�=n

Re
〈ūkn|T̃ |ūkm〉〈ūkm|{σy,v̄x}|ūkn〉

Ēkn − Ēkm

, (51)

where T̃ (r) = −µBσ × êz�
xc(r) is the torque operator of

the collinear system described by Eq. (50). Using T̃j =

i[H̄k,σj ]/2, we can simplify Eq. (51) into

τ̃ kn = −
h̄q

2
êxsknv̄knx, (52)

where v̄knx = 〈ūkn|v̄x |ūkn〉 is the group velocity in x direction
and the spin index skn = 〈ūkn|σz |ūkn〉 is 1 for minority
electrons and −1 for majority electrons. Rotating τ̃ kn back
into the original reference frame, we obtain

τ kn = −
h̄q

2
sknv̄knx





cos(qx)
0

− sin(qx)



, (53)

i.e., τ kn lies in the zx plane and stays always perpendicular to
n̂c(r) [Eq. (43)], while it rotates in the same sense as n̂c(r).

The sign of the torque τ kn depends on the sign of the spin
index skn as well as on the sign of the group velocity v̄knx . Since
v̄−knx = −v̄knx the Brillouin zone integral of τ kn is zero:

∫

ddk

(2π )d
∑

n

fknτ kn = 0. (54)

However, when an electric field is applied along x direction, a
net torque on the magnetization of the spin-spiral arises from
the τ kn, the so-called adiabatic spin-transfer torque [29,31,32].
If we approximate the relaxation time by the constant τ , the
adiabatic spin-transfer torque, which we denote by τ adia, is
obtained from Eq. (54) by considering that in the presence
of the electric field the occupancies fkn change by δfkn =

−eτ v̄knxδ(EF − Ēkn)Ex . We obtain

τ adia = −eτ

∫

ddk

(2π )d
∑

n

τ knv̄knxδ(EF − Ēkn)Ex

=
h̄eτq

2

∫

ddk

(2π )d
∑

n

sknv̄
2
knx





cos(qx)
0

− sin(qx)





× δ(EF − Ēkn)Ex

=
h̄q

2e
(σ↑ − σ↓)





cos(qx)
0

− sin(qx)



Ex

=
h̄

2e
PJx

∂ n̂(r)

∂x
=

∂ Qx(r)

∂x
, (55)

where

P =
σ↑ − σ↓

σ↑ + σ↓

(56)

is the polarization of the electric current,

Qx(r) =
h̄

2e
PJx n̂(r) (57)

is the spin current density, σ↑ and σ↓ are the respective
contributions of the minority and majority electrons to the
electrical conductivity, and Jx is the electrical current density.
The observation that Eq. (55), i.e., τ adia = ∂ Qx(r)/∂x, is the
well-known expression for the adiabatic spin-transfer torque
[29,31,32] validates the approach of combining the gauge
transformation Eq. (45) with first-order perturbation theory
in Eq. (51) to obtain τ kn.

The origin of the torque τ kn is the y component Skny of the
spin that electrons acquire as they move along the cycloidal
spin spiral of Eq. (43):

Skny = −
h̄2q

4

∑

m�=n

Re
〈ūkn|σy |ūkm〉〈ūkm|{σy,v̄x}|ūkn〉

Ēkn − Ēkm

= −
h̄2q

2

∑

m�=n

Im
〈ūkn|T̃y |ūkm〉〈ūkm|{σy,v̄x}|ūkn〉

(Ēkn − Ēkm)2
.

(58)

Assuming that the minority (↑) and majority (↓) states differ
only by a rigid shift �E of the band energies, i.e.,

Ēkn↑ = Ēkn + �E, |ūkn↑〉 = |ūkn〉

(

1
0

)

,

Ēkn↓ = Ēkn, |ūkn↓〉 = |ūkn〉

(

0
1

)

,
(59)

we can approximate Eq. (58) by

Skny ≈ −skn

h̄2q

2�E
v̄knx . (60)

As in the case of τ kn [cf. Eq. (53)], the sign of Skny depends

not only on skn but also on the sign of v̄knx . Therefore, as
illustrated in Fig. 1, electron spins with the same skn are tilted
out of the zx plane in opposite directions if their v̄knx differs
in sign.

We add now the effect of SOI, which is not taken into
account in Eq. (42). In nonmagnetic crystals with broken
inversion symmetry the degeneracy between spin-up and
spin-down bands is lifted by SOI, which can be described
by an effective k-dependent magnetic field �SOI

kn , which acts
on the electron spins (see Refs. [33–36] for reviews). This
so-called spin-orbit field is an odd function of k and may be
expanded as [35]

�SOI
kni =

∑

j

χ
(2)
nijkj +

∑

j lm

χ
(4)
nij lmkjkl km + · · · , (61)

where χ
(2)
nij is the ij element of an axial tensor of second rank,

which depends on the band index n. χ (4)
nij lm is the ij lm element

of an axial tensor of fourth rank.
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(a)

(b)

(c)

(d)

x

y

z

FIG. 1. Thick transparent arrows parallel to the zx plane illustrate
the magnetization direction in the cycloidal spin spiral of Eq. (43) (for
q < 0). Spheres with attached arrows illustrate conduction electrons
and their spins. According to Eq. (60) the spin of a conduction
electron has a component in y direction and is therefore not perfectly
aligned with the magnetization. (a) Minority electron with vknx < 0:
Skny < 0. (b) Majority electron with vknx < 0: Skny > 0. (c) Minority
electron with vknx > 0: Skny > 0. (d) Majority electron with vknx > 0:
Skny < 0.

For the (001) and (111) surfaces of cubic transition metals
such as Pt and W, symmetry requires that axial second rank
tensors be of the form

χ (2)
n =





0 αn 0
−αn 0 0

0 0 0



 (62)

if the coordinate frame is chosen such that the surface
normal is along z direction. The resulting Zeeman interaction
between the spin-orbit field and the electron spin is given
by

µBσ · �SOI
kn = µBαn (σ × k) · êz , (63)

which has the form of the Rashba interaction with a band-
dependent Rashba parameter αn .

We now consider magnetic bilayers, where a magnetic
layer is deposited on the (001) or (111) surfaces of cubic
transition metals, such as Mn/W(001) and Co/Pt(111). When
the magnetization is described by the cycloidal spin spiral of
Eq. (43), electrons traveling in x direction exhibit nonzero
y components of both spin [see Eq. (60)] and spin-orbit
field:

Skny ≈ −skn

h̄2q

2�E
v̄knx,

�SOI
kn · êy = −αnkx .

(64)

A linear-in-q energy shift results from the Zeeman interaction
between Skny and �SOI

kn :

�E (I)
DMI ≈

µB h̄q

�E

∫

ddk

(2π )d
∑

n

fknαnkx sknv̄knx . (65)

We emphasize that the Brillouin zone integral of Eq. (60) is
zero because electrons with opposite k vectors have opposite

velocities v̄knx and their Skny cancel. However, �E (I)
DMI is

nonzero since both Skny and �SOI
kn are odd functions of k.

Equations (64) and (65) are a central result of this section:
they show how DMI is related to the spin-orbit field and to the
adiabatic spin-transfer torque.

While Eq. (65) provides a useful and intuitive picture of the
origin of DMI, it provides only a rather crude estimate because
we approximated SOI in the magnetic bilayer by Eq. (63) and
we used Eq. (59) to derive the approximation Eq. (60) of Skny .

In order to obtain a more accurate expression for �E (I)
DMI, we

use the full spin-orbit interaction H SOI instead of Eq. (65) and
we do not use the rigid shift model (59). This yields

�E (I)
DMI ≈ −

h̄q

2

∫

ddk

(2π )d
∑

n

fkn

×
∑

m�=n

Re

{

〈ūkn|Vk|ūkm〉〈ūkm|{σy,v̄x}|ūkn〉

Ēkn − Ēkm

}

= qa(I)
yx . (66)

Here, a(I)
yx is the y component of a(I)

x , i.e., ayx = êy · a(I)
x , where

êy is the unit vector in y direction. There are two ways to
read this equation. The first way is to consider SOI, i.e., Vk,
as perturbation. Then Eq. (66) describes the change of the
observable h̄{σy,v̄x}/4 in response to the perturbation Vk, i.e.,
it describes part of the SOI-linear contribution to the ground-
state spin current. The second way to read Eq. (66) has been
described in detail in this section: according to Eq. (49), we can
consider −h̄q{σy,v̄x}/4 as the perturbation arising from the
noncollinear spin-spiral structure. Then Eq. (66) describes the
response of the observable Vk to the noncollinear spin-spiral
structure. The observable Vk measures the Zeeman interaction
between the spin-orbit field and the noncollinearity-induced
spin, i.e., an energy shift due to DMI. Equation (66) is a central
result of this section: the two ways of reading Eq. (66) explain
in a simple and intuitive way why DMI and ground-state spin
currents are related.

In the discussion above, we considered the special case
of flat cycloidal spirals. For a general noncollinear magnetic
texture, an electron moving with velocity v̄kn is misaligned
with the local magnetization by

Skn ≈ −skn

h̄2

2�E
n̂ × (v̄kn · ∇)n̂

= −
∑

j

v̄knj skn

h̄2

2�E

[

n̂ ×
∂ n̂

∂rj

]

, (67)

which is obtained by generalizing Eq. (60). Assuming that the
k-linear term in the spin-orbit field Eq. (61) dominates we can
write the energy shift due to the Zeeman interaction of Skn

with �SOI
kn as

�E (I)
DMI ≈ −

µBh̄

�E

∫

ddk

(2π )d
∑

n

fkn

×
∑

j

sknv̄knj

[

χ (2)
n k

]

·

[

n̂ ×
∂ n̂

∂rj

]

. (68)
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Comparing this expression to Eq. (1) leads to the approxima-
tion

a
(I)
j ≈ −

µBh̄

�E

∑

n

χ (2)
n êj

∫

ddk

(2π )d
fknsknv̄knjkj , (69)

from which it follows that the tensor a
(I)
ij has the same

symmetry properties as the tensors χ
(2)
nij . This result can also

be concluded directly from symmetry arguments, because
Dij = êi · Dj is an axial tensor of second rank exactly like
χ

(2)
ij . Thus Dij is of the form of Eq. (62) for (001) and

(111) surfaces of cubic transition metals. Also the torkance
tensor that describes the spin-orbit torque is an axial tensor of
second rank. Therefore the symmetry of Dij can be determined
from the symmetry of the magnetization-even component
of the torkance tensor, which has been determined for all
crystallographic point groups [37–39].

B. The contribution a
(II)

j

In Eq. (49), we describe the perturbation to the Hamiltonian
due to the noncollinearity by the anticommutator of the Pauli
matrix with the velocity operator v̄, where the effect of SOI is
missing in v̄. In the presence of SOI, the term −h̄q{σy,v

SOI
x }/4

therefore needs to be added to the perturbation. In the first
order, this leads to the energy correction described by a

(II)
j in

Eq. (23).
The SOI-correction of the velocity operator can be written

as

vSOI =
i

h̄
[Vk,r] =

µB

2mc2e
σ × ∇V, (70)

where we used that SOI is described by the last term in
Eq. (7). Equation (70) allows us to rewrite the anticommutators
{σi,v

SOI
j } occurring in Eq. (23) as

{

σi,v
SOI
j

}

= −
µB

mc2e
ǫijk

∂V (r)

∂rk

, (71)

where we used {σi,σj } = 2δij . Finally, we obtain

a
(II)
ij = êi · a

(II)
j

=
h̄µB

4mc2e
ǫijk

∫

ddk

(2π )d
∑

n

f (Ēkn)〈ūkn|
∂V (r)

∂rk

|ūkn〉,

(72)
where êi is the unit vector in the ith cartesian direction,
ǫijk is the Levi-Civita symbol and a

(II)
ij is the ith cartesian

component of a
(II)
j . Thus a

(II)
ij is directly proportional to the

expectation value of the gradient of the scalar effective po-
tential. In centrosymmetric systems, this expectation value is
zero.

In noncentrosymmetric systems, Eq. (72) is generally
nonzero, even in nonmagnetic systems. However, in non-
magnetic systems Q

(1)
j has to vanish, because according to

Eq. (40) it is related to DMI, which is zero in nonmagnetic
systems. We therefore prove now that a

(I)
j and a

(II)
j cancel out

in nonmagnetic systems. In nonmagnetic systems, Eq. (22) can

be rewritten as

a(I)
yx = êy · a(I)

x = −
h̄

4
Re

∫

ddk

(2π )d
∑

n,m,s

f (Ēkns) − f (Ēkms)

Ēkns − Ēkms

×〈ūkns |{σy,v̄x}|ūkm−s〉〈ūkm−s |Vk|ūkns〉

= −
h̄

2
Im

∫

ddk

(2π )d
∑

n,m,s

s
f (Ēkns) − f (Ēkms)

Ēkns − Ēkms

×〈ūkns |v̄x |ūkms〉〈ūkm−s |Vk|ūkns〉

= −
µB

2eh̄c2
Re

∫

ddk

(2π )d
∑

n,m,s

f (Ēkns)

×
∂〈ūkns |

∂kx

|ūkms〉〈ūkms |
∂V (r)

∂rz

∂H̄k

∂kx

|ūkns〉

=
h̄µB

4emc2
Re

∫

ddk

(2π )d
∑

n,s

f (Ēkns)〈ūkns |
∂V (r)

∂rz

|ūkns〉.

(73)

To simplify the equations, we treat only the y component of
a(I)

x in Eq. (73). The other components can be worked out
analogously. s = ±1 labels the spin, i.e., s = +1 denotes spin
up and s = −1 denotes spin down and we used 〈s|σy | − s〉 =

−is. Since the system is supposed to be nonmagnetic, all
energy levels are at least doubly degenerate: Ēkn+1 = Ēkn−1.
In the last step, we have used integration by parts and we
have substituted the second kx derivative of H̄k by h̄2/m.
Comparison of Eqs. (72) and (73) shows that a(I)

xy + a(II)
xy = 0

in nonmagnetic systems. [Note that in Eq. (73) the band index
n runs over doubly degenerate states and there is an additional
spin index s. In Eq. (72), there is only one band index, which
runs over both spin-up and spin-down states.]

IV. INTERPRETATION OF THE GROUND-STATE ENERGY

CURRENT ASSOCIATED WITH DMI

When the magnetization is time-dependent, e.g., when
skyrmions or domain walls are moving or when the mag-
netization is precessing at the ferromagnetic resonance, a
ground-state energy current arises from DMI [24]. It is
given by

J DMI
j = −Dj ·

(

n̂ ×
∂ n̂

∂t

)

. (74)

In Eq. (65), we model DMI by the Zeeman interaction between
the spin-orbit field and the misalignment of the spins of
conduction electrons with the noncollinear magnetic texture.
Based on this model we develop an interpretation of the
ground-state energy current J DMI

j in the following.
According to Eq. (67), the misalignment of the spin of the

electron of band n at k point k can be written as

Skn(r) =
∑

j

S (kn)
j (n̂(r))

(

n̂(r) ×
∂ n̂(r)

∂rj

)

, (75)

where we introduced the misalignment coefficients S (kn)
j ,

which are given approximately by

S (kn)
j ≈ −skn

h̄2

2�E
v̄knj . (76)
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We now consider a magnetic texture n̂(r,t), which moves with
velocity w such that

n̂(r,t) = n0(r − wt), (77)

where n0(r) describes, for example, a domain-wall or a
skyrmion at rest. For such a magnetic texture in motion,
the spin misalignment is time-dependent and satisfies the
continuity equation

∂ Skn

∂t
+

∑

j

∂ Q
(kn)
j

∂rj

= 0, (78)

where

Q
(kn)
j = −S (kn)

j (n̂)

(

n̂ ×
∂ n̂

∂t

)

(79)

is the misaligned part of the spin-current density driven by
the motion of the magnetic structure and associated with the
electron in band n at k point k.

The Brillouin zone integral of Q
(kn)
j is zero:

∑

n

∫

ddk

(2π )d
f (Ēkn) Q

(kn)
j = 0, (80)

because according to Eq. (76) the misalignment coefficients are
odd functions of k, i.e., S (−kn)

j = −S (kn)
j , and consequently

Q
(kn)
j is also an odd function of k, i.e., Q

(−kn)
j = − Q

(kn)
j .

Consequently, Eq. (79) does not lead to a net spin current, but
it describes counter-propagating spin currents, where the spin
current carried by electrons at k point k has the opposite sign
of the spin current carried by electrons at −k.

From Eq. (75) until Eq. (80), SOI is not yet considered.
Therefore the ground-state spin current associated with SOI is
not present. However, even in the absence of SOI, there are
several additional spin currents present that are not included
in our definition of Q

(kn)
j . First, there is the spin current

Qxc
j =

∑

n

∫

ddk

(2π )d
f (Ēkn)Sknv̄knj , (81)

which mediates the exchange-stiffness torque. In contrast to
Q

(kn)
j , the spin current Qxc

j is zero in collinear systems, i.e.,
whenever ∂ n̂/∂ r = 0. However, the Brillouin-zone integration
leads to a nonzero value of Qxc

j in noncollinear systems,

while the Brillouin-zone integral of Q
(kn)
j vanishes according

to Eq. (80). Second, the time dependence of n̂ can lead to
spin-pumping, in particular in magnetic bilayer systems. Most
discussions on spin-pumping focus on net spin currents [by
“net” we mean that in contrast to Eq. (80) the Brillouin zone
integral is not zero] that flow in magnetic bilayer systems
from the magnet into the nonmagnet. In contrast, the spin
currents described by Eq. (79) are counter-propagating, i.e.,
Q

(−kn)
j = − Q

(kn)
j . However, in analogy to the discussion of

Eq. (64), we will show now that such counter-propagating spin
currents are exactly what is needed to interpret the ground-state
energy current J DMI

j .
In order to include SOI, we multiply Eq. (78) by the spin-

orbit field. Subsequently, we integrate over the Brillouin zone
and add the contributions of all occupied bands. This yields

the continuity equation for DMI energy:

∂
(

�E (I)
DMI

)

∂t
+

∑

j

∂J DMI,I
j

∂rj

= 0, (82)

where

J DMI,I
j =

2µB

h̄

∑

n

∫

ddk

(2π )d
f (Ēkn) Q

(kn)
j · �SOI

kn (83)

is a ground-state energy current associated with DMI. This
approximation leads to the picture that J DMI,I

j is associated
with counter-propagating spin currents, where the spins carry
energy due to their Zeeman interaction with the spin-orbit field.
Since both Q

(kn)
j and �SOI

kn are odd functions of k, J DMI,I
j is

nonzero in systems with inversion asymmetry.
The continuity equation of DMI energy, Eq. (82), has been

discussed in detail in Ref. [24]. It describes that DMI energy
associated with domain walls or skyrmions in motion moves
together with these objects. In this section, we have shown that
Eq. (82) results from the continuity equation, Eq. (78), of the
spin misalignment.

V. RASHBA MODEL

We consider the model Hamiltonian

Hk =
h̄2

2m
k2 + α(k × êz) · σ +

�V

2
σz, (84)

where the first term is the kinetic energy, the second term
describes the Rashba spin-orbit coupling, and the third term
describes the exchange interaction. The velocity operators are
given by the expressions [40]

vx =
h̄

m
kx −

α

h̄
σy,

vy =
h̄

m
ky +

α

h̄
σx,

(85)

and the spin velocity operators are [41]

h̄

4
{vy,σx} =

h̄2

2m
kyσx +

1

2
α,

h̄

4
{vx,σy} =

h̄2

2m
kxσy −

1

2
α.

(86)

First, we discuss the case �V = 0, where DMI vanishes.
For the ground-state spin currents, Eq. (5), the following
analytical expressions are readily derived:

Qx = −
m2α3

6πh̄4 êy,

Qy =
m2α3

6πh̄4 êx,

(87)

when the temperature T = 0 and when the chemical potential
µ > 0. In agreement with our discussion in Sec. III B, there is
no α-linear term in Eq. (87) because the system is nonmagnetic
due to �V = 0. On the other hand, the ground-state spin
currents are nonzero even in this nonmagnetic case. Since
DMI vanishes for nonmagnetic systems Eq. (6) is violated,
while Eq. (40) is fulfilled.
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FIG. 2. DMI coefficient Dyx (squares) and spin current Qyx

(circles) vs α in the Rashba model Eq. (84) for the parameters µ = 0
and �V = 1 eV.

Next, we discuss the magnetic case. Figure 2 shows the
DMI-coefficient Dyx and the ground-state spin current Qyx

for �V = 1 eV at µ = 0 as a function of α. In the SOI-linear
regime, i.e., for small α, we find Dyx = −Qyx , in agreement
with the analytical result in Eq. (40). For large values of
α, nonlinearities become pronounced in both Dyx and Qyx .
Interestingly, Qyx exhibits stronger nonlinearity than Dyx

does. Therefore also in the magnetic Rashba model Eq. (6)
is violated, while Eq. (40) is fulfilled.

VI. ab initio CALCULATIONS

In the following, we discuss DMI and ground-state spin
currents in Mn/W(001) and Co/Pt(111) magnetic bilayers
based on ab initio density-functional theory calculations.
The Mn/W(001) system consists of one monolayer of Mn
deposited on nine layers of W(001) in our simulations.
The Co/Pt(111) bilayer is composed of three layers of Co
deposited on ten layers of Pt(111). Computational details of
the electronic structure calculations are given in Ref. [9],
where we investigated spin-orbit torques in Mn/W(001) and
Co/Pt(111). We use Eq. (5) to evaluate the full ground-state
spin-current density Qyx = êy · Qx . Its SOI-linear part Q(1)

yx =

−a(I)
yx − a(II)

yx is calculated from Eq. (22) and from Eq. (23). We
employ Eq. (2) to compute the DMI coefficient Dyx = êy · Dx .
The temperature in the Fermi function f (E) and in the grand
canonical potential density g(E) is set to T = 300 K.

In Fig. 3, we plot both the spin current Qyx = êy · Qx and
the DMI coefficient Dyx = êy · Dx as a function of SOI scaling
factor ξ for the two systems Mn/W(001) and Co/Pt(111). The
figure shows that in the linear regime, i.e., for small ξ , the
relation Dyx = −Qyx is satisfied very well, in agreement with
the analytical result in Eq. (40). For large values of ξ , nonlinear
contributions become important for both Qyx and Dyx and
the DMI coefficient is no longer described very well by the
ground-state spin current.

In Mn/W(001), we show Qyx and Dyx for two different
magnetization directions n̂, namely n̂‖z and n̂‖x. Both Qyx

and Dyx depend on n̂. For small ξ , the n̂ dependence of Dyx

is well described by the n̂ dependence of Qyx . However, at
ξ = 1, the n̂ dependence of Qyx is much stronger than the n̂

dependence of Dyx .
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FIG. 3. DMI coefficient Dyx (squares) and spin current Qyx

(circles) vs SOI scaling factor ξ in (a) Mn/W(001) and (b) Co/Pt(111).
For the Mn/W(001) magnetic bilayer results are shown for magne-
tization along z (n̂‖z) and for magnetization along x (n̂‖x). For the
Co/Pt(111), magnetic bilayer results are shown for magnetization
along z. The insets illustrate the geometry and the coordinate system.

Interestingly, Qyx is much more nonlinear in ξ than Dyx

in the considered ξ range. This leads to large deviations
between Dyx and −Qyx at ξ = 1. Since Dyx is almost linear
up to ξ = 1, a good approximation is Dyx ≈ −Q(1)

yx . This is
a major difference to the B20 compounds Mn1−xFexGe and
Fe1−xCoxGe for which Dyx ≈ −Qyx has been found to be a
good approximation [11]. Due to the strong SOI from the 5d

heavy metals in the magnetic bilayer systems considered in
this work the SOI-nonlinear contributions in Qyx require to
extract the SOI-linear part Q(1)

yx in order to approximate DMI
by the spin current as Dyx ≈ −Q(1)

yx .
The finding that Dyx ≈ −Q(1)

yx is a good approximation
despite the strong SOI from the heavy metals motivates us
to investigate Q(1)

yx further by splitting it up into its two
contributions −a(I)

yx and −a(II)
yx . In Fig. 4, we show Q(1)

yx and
the two contributions −a(I)

yx and −a(II)
yx . In order to investigate

chemical trends, we artificially shift the Fermi level by �EF.
The Mn/W and Co/Pt bilayer systems correspond to �EF = 0.
Negative values of �EF approximately describe the doped
systems Mn1−xCrx/W1−xTax and Co1−xFex/Pt1−xIrx , while
positive values of �EF approximately describe the doped
systems Mn1−xFex/W1−xRex and Co1−xNix/Pt1−xAux .
Figure 4 clearly shows that a(I)

yx and a(II)
yx are generally of similar

magnitude. In Mn/W(001) at �EF = 0, there is a crossing of
a(II)

yx through zero and therefore Q(1)
yx ≈ −a(I)

yx . However, for
�EF �= 0, both a(I)

yx and a(II)
yx are important. In Co/Pt(111),
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FIG. 4. Spin current Qyx (squares), SOI linear contribution Q(1)
yx

to the spin current (circles), and the contributions a(I)
yx (triangles)

and a(II)
yx (diamonds) to Q(1)

yx = −a(I)
yx − a(II)

yx . Results are shown as
a function of Fermi energy shift �EF in (a) Mn/W(001) and
(b) Co/Pt(111) for magnetization in z direction.

both a(I)
yx and a(II)

yx are much larger in magnitude than Q(1)
yx but

opposite in sign. We also show Qyx in Fig. 4. Qyx and Q(1)
yx

behave similarly as a function of �EF. However, due to the
strong SOI from the 5d transition metal, Qyx and Q(1)

yx often
deviate substantially.

Numerical tests in Fe and Ni have shown that the effect
of the SOI-correction vSOI

j on optical conductivities and the
magneto-optical Kerr effect is small [42,43]. At first glance,
it is therefore surprising that a(II)

yx is as important as a(I)
yx in

Co/Pt(111) according to Fig. 4. One reason is that SOI in Pt
is stronger than in Fe and Ni, but a second important reason
is that from the ten layers of Pt only the first few layers close
to the interface matter for DMI while all Pt layers contribute
to a(I)

yx and to a(II)
yx . In order to illustrate this we calculate the

coefficient a(I,4)
yx , which is obtained from Eq. (22) when SOI

is included only in the three Co layers and in the adjacent
interfacial Pt layer and artificially switched off in the other
nine Pt layers. We plot the resulting coefficient a(I,4)

yx in Fig. 5
as a function of Fermi energy shift �EF and compare it to
the DMI coefficient Dyx . Figure 5 shows that a(I,4)

yx is a good
approximation for Dyx in the region −0.75 eV < �EF < 0.
This suggests the picture that the essential DMI physics in
transition metal bilayers is contained in a(I)

yx . However, when
the 5d heavy metal layer is very thick, a(I)

yx gets contaminated
by −a(II)

yx and therefore the correct expression in first order
of SOI is D(1)

yx = a(I)
yx + a(II)

yx . This interpretation is also in line
with our discussion in Sec. III B, where we point out that a(I)

yx
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FIG. 5. DMI coefficient Dyx (squares) and the part a(I,4)
yx of a(I)

yx

where SOI is switched off in all Pt layers that are far away from the
Co/Pt interface (triangles). Results are shown as a function of Fermi
energy shift �EF in Co/Pt(111) for magnetization in z direction.

and a(II)
yx may individually be nonzero in nonmagnets while

their sum cancels out in nonmagnets.

VII. SUMMARY AND OUTLOOK

We show analytically that at the first order in the pertur-
bation by SOI DMI is given by the ground-state spin current.
As a consequence, ground-state spin currents in nonmagnetic
systems cannot exist at the first order in SOI. In the special case
of the Rashba model, they arise at the third order in SOI. This
clarifies the connection between the Berry-phase approach and
the spin-current approach to DMI. The SOI-linear contribution
to DMI can be decomposed into two contributions. The first
contribution can be understood by mapping spin-spirals onto
magnetically collinear systems by a gauge transformation
and adding spin-orbit coupling perturbatively. We obtain an
intuitive interpretation of the first contribution as Zeeman
interaction between the spin-orbit field and the misalignment
of electron spins in magnetically noncollinear textures. We
discuss how the misalignment is related to the spin-transfer
torque and how the symmetry of DMI is related to the spin-
orbit field. Thereby, we also provide a simple explanation why
DMI and the ground-state spin current are related. The second
contribution arises from the SOI-correction to the velocity
operator. While the SOI-correction to the velocity operator is
in principle small in transition metals, its contribution to DMI
cannot be neglected in magnetic bilayer systems with thick
heavy metal layers. When magnetic textures are moving, the
spin misalignment of electrons leads to counter-propagating
spin currents. These counter-propagating spin currents carry
energy due to their Zeeman interaction with the spin-orbit
field. Thereby, our theory highlights the connections of DMI to
spintronics concepts such as spin-orbit fields and spin-transfer
torque. We calculate DMI and ground-state spin currents from
ab initio in Mn/W(001) and Co/Pt(111) magnetic bilayers.
We find that due to the strong SOI from the heavy metal
layers DMI is not well approximated by the full ground-state
spin current. Thereby, we illustrate the limitations of the
spin-current approach to DMI in systems with strong SOI.
However, the SOI-linear contribution to the ground-state spin
current provides a good and useful approximation for DMI in
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systems with strong SOI because DMI is much more linear in
SOI than the ground-state spin current is.

The application of electric fields or light can change the
DMI coefficients [44]. While a complete ab initio theory of
nonequilibrium exchange interactions and DMI is still missing,
an interesting application of the spin-current description of
DMI is the estimation of the variation of DMI by nonequi-
librium spin currents excited by applied electric fields or
by light. In order to induce or to modify DMI the spin in
the nonequilibrium spin current needs to have a component
perpendicular to the magnetization. One option to generate
such a spin current is the spin Hall effect [6], which allows the
generation of spin currents of the order of 107 A/cm2h̄/e in
metals with large SOI. A spin current of this size corresponds
to a DMI change of the order of 0.05 meV Å per atom.
While this is smaller than the equilibrium DMI in Mn/W and
Co/Pt by more than two orders of magnitude and therefore

difficult to measure in these systems, DMI-changes due to
the spin Hall effect might be measurable in systems with
small or zero DMI. Using femtosecond laser pulses, one can
excite significantly stronger nonequilibrium spin currents of
the order of 109 A/cm2h̄/e [8]. For such strong spin currents
the spin-current picture of DMI leads to the estimate of a
DMI-change of 5 meV Å per atom, which is the order of
magnitude of the equilibrium DMI in Mn/W and Co/Pt bilayer
systems.
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