000836661 001__ 836661
000836661 005__ 20240712112828.0
000836661 0247_ $$2doi$$a10.1149/2.0301712jes
000836661 0247_ $$2ISSN$$a0013-4651
000836661 0247_ $$2ISSN$$a0096-4743
000836661 0247_ $$2ISSN$$a0096-4786
000836661 0247_ $$2ISSN$$a1945-7111
000836661 0247_ $$2Handle$$a2128/15122
000836661 0247_ $$2WOS$$aWOS:000415283600004
000836661 037__ $$aFZJ-2017-05730
000836661 041__ $$aEnglish
000836661 082__ $$a540
000836661 1001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b0$$eCorresponding author
000836661 245__ $$aInfluence of Dopant Type and Orientation of Silicon Anodes on Performance, Efficiency and Corrosion of Silicon–Air Cells with EMIm(HF) 2.3 F Electrolyte
000836661 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2017
000836661 3367_ $$2DRIVER$$aarticle
000836661 3367_ $$2DataCite$$aOutput Types/Journal article
000836661 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1502199417_1184
000836661 3367_ $$2BibTeX$$aARTICLE
000836661 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836661 3367_ $$00$$2EndNote$$aJournal Article
000836661 520__ $$aIntermediate term discharge experiments were performed for Si–air full cells using As-, Sb- and B-doped Si-wafer anodes, with 〈100〉 and 〈111〉 orientations for each type. Discharge characteristics were analyzed in the range of 0.05 to 0.5 mA/cm2 during 20 h runs, corrosion rates were determined via the mass-change method and surface morphologies after discharge were observed by laser scanning microscopy and atomic force microscopy. Corresponding to these experiments, potentiodynamic polarization curves were recorded and analyzed with respect to current-potential characteristics and corrosion rates. Both, discharge and potentiodynamic experiments, confirmed that the most pronounced influence of potentials – and thus on performance – results from the dopant type. Most important, the corrosion rates calculated from the potentiodynamic experiments severely underestimate the fraction of anode material consumed in reactions that do not contribute to the conversion of anode mass to electrical energy. With respect to materials selection, the estimates of performance from intermediate term discharge and polarization experiments lead to the same conclusions, favoring 〈100〉 and 〈111〉 As-doped Si-wafer anodes. However, the losses in the 〈111〉 As-doped Si-anodes are by 20% lower, so considering the mass conversion efficiency this type of anode is most suitable for application in non-aqueous Si–air batteries.
000836661 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000836661 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000836661 588__ $$aDataset connected to CrossRef
000836661 7001_ $$0P:(DE-Juel1)168563$$aJakobi, Simon$$b1
000836661 7001_ $$0P:(DE-Juel1)171310$$aBeuse, Thomas$$b2
000836661 7001_ $$0P:(DE-Juel1)161361$$aAslanbas, Özgür$$b3
000836661 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b4
000836661 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b5
000836661 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b6
000836661 7001_ $$0P:(DE-HGF)0$$aEin-Eli, Yair$$b7
000836661 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8
000836661 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b9
000836661 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0301712jes$$gVol. 164, no. 12, p. A2310 - A2320$$n12$$pA2310 - A2320$$tJournal of the Electrochemical Society$$v164$$x1945-7111$$y2017
000836661 8564_ $$uhttps://juser.fz-juelich.de/record/836661/files/J.%20Electrochem.%20Soc.-2017-Durmus-A2310-20.pdf$$yOpenAccess
000836661 8564_ $$uhttps://juser.fz-juelich.de/record/836661/files/J.%20Electrochem.%20Soc.-2017-Durmus-A2310-20.gif?subformat=icon$$xicon$$yOpenAccess
000836661 8564_ $$uhttps://juser.fz-juelich.de/record/836661/files/J.%20Electrochem.%20Soc.-2017-Durmus-A2310-20.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000836661 8564_ $$uhttps://juser.fz-juelich.de/record/836661/files/J.%20Electrochem.%20Soc.-2017-Durmus-A2310-20.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000836661 8564_ $$uhttps://juser.fz-juelich.de/record/836661/files/J.%20Electrochem.%20Soc.-2017-Durmus-A2310-20.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000836661 8564_ $$uhttps://juser.fz-juelich.de/record/836661/files/J.%20Electrochem.%20Soc.-2017-Durmus-A2310-20.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000836661 8767_ $$92017-08-02$$d2017-08-02$$eHybrid-OA$$jOffsetting$$lOffsetting: ECS$$zECS Plus
000836661 8767_ $$92017-08-02$$d2017-08-02$$eHybrid-OA$$jOffsetting$$lKK: Barbers$$z100 USD Supplementary Material
000836661 909CO $$ooai:juser.fz-juelich.de:836661$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000836661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b0$$kFZJ
000836661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b4$$kFZJ
000836661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b5$$kFZJ
000836661 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167581$$aRWTH Aachen$$b5$$kRWTH
000836661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b6$$kFZJ
000836661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ
000836661 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b8$$kRWTH
000836661 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b9$$kFZJ
000836661 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000836661 9141_ $$y2017
000836661 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836661 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000836661 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000836661 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2015
000836661 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836661 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836661 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836661 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000836661 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836661 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836661 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836661 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836661 920__ $$lyes
000836661 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000836661 9801_ $$aFullTexts
000836661 980__ $$ajournal
000836661 980__ $$aVDB
000836661 980__ $$aI:(DE-Juel1)IEK-9-20110218
000836661 980__ $$aUNRESTRICTED
000836661 980__ $$aAPC
000836661 981__ $$aI:(DE-Juel1)IET-1-20110218