000836767 001__ 836767
000836767 005__ 20220930130128.0
000836767 0247_ $$2doi$$a10.1021/acsami.7b02921
000836767 0247_ $$2ISSN$$a1944-8244
000836767 0247_ $$2ISSN$$a1944-8252
000836767 0247_ $$2pmid$$apmid:28508634
000836767 0247_ $$2WOS$$aWOS:000403136400097
000836767 037__ $$aFZJ-2017-05819
000836767 041__ $$aEnglish
000836767 082__ $$a540
000836767 1001_ $$0P:(DE-HGF)0$$aCho, Deok-Jong$$b0
000836767 245__ $$aInterfacial Metal–Oxide Interactions in Resistive Switching Memories
000836767 260__ $$aWashington, DC$$bSoc.$$c2017
000836767 3367_ $$2DRIVER$$aarticle
000836767 3367_ $$2DataCite$$aOutput Types/Journal article
000836767 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547474625_20255
000836767 3367_ $$2BibTeX$$aARTICLE
000836767 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836767 3367_ $$00$$2EndNote$$aJournal Article
000836767 520__ $$aMetal oxides are commonly used as electrolytes for redox-based resistive switching memories. In most cases, non-noble metals are directly deposited as ohmic electrodes. We demonstrate that irrespective of bulk thermodynamics predictions an intermediate oxide film a few nanometers in thickness is always formed at the metal/insulator interface, and this layer significantly contributes to the development of reliable switching characteristics. We have tested metal electrodes and metal oxides mostly used for memristive devices, that is, Ta, Hf, and Ti and Ta2O5, HfO2, and SiO2. Intermediate oxide layers are always formed at the interfaces, whereas only the rate of the electrode oxidation depends on the oxygen affinity of the metal and the chemical stability of the oxide matrix. Device failure is associated with complete transition of short-range order to a more disordered main matrix structure.
000836767 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000836767 588__ $$aDataset connected to CrossRef
000836767 7001_ $$0P:(DE-Juel1)162283$$aLübben, Michael$$b1
000836767 7001_ $$0P:(DE-HGF)0$$aWiefels, Stefan$$b2
000836767 7001_ $$0P:(DE-HGF)0$$aLee, Kug-Seung$$b3
000836767 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b4$$eCorresponding author
000836767 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.7b02921$$gVol. 9, no. 22, p. 19287 - 19295$$n22$$p19287 - 19295$$tACS applied materials & interfaces$$v9$$x1944-8252$$y2017
000836767 8564_ $$uhttps://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.pdf$$yRestricted
000836767 8564_ $$uhttps://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.gif?subformat=icon$$xicon$$yRestricted
000836767 8564_ $$uhttps://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000836767 8564_ $$uhttps://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.jpg?subformat=icon-180$$xicon-180$$yRestricted
000836767 8564_ $$uhttps://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.jpg?subformat=icon-640$$xicon-640$$yRestricted
000836767 8564_ $$uhttps://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.pdf?subformat=pdfa$$xpdfa$$yRestricted
000836767 8767_ $$92017-04-13$$d2017-04-26$$ePermission$$jZahlung erfolgt$$z1 Abbildung, USD 153,50
000836767 909CO $$ooai:juser.fz-juelich.de:836767$$pOpenAPC$$pVDB$$popenCost
000836767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b4$$kFZJ
000836767 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000836767 9141_ $$y2018
000836767 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836767 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836767 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836767 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000836767 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836767 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836767 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836767 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836767 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836767 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000836767 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000836767 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000836767 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000836767 980__ $$ajournal
000836767 980__ $$aVDB
000836767 980__ $$aI:(DE-Juel1)PGI-7-20110106
000836767 980__ $$aI:(DE-82)080009_20140620
000836767 980__ $$aAPC
000836767 980__ $$aUNRESTRICTED
000836767 9801_ $$aAPC