Home > Publications database > Interfacial Metal–Oxide Interactions in Resistive Switching Memories > print |
001 | 836767 | ||
005 | 20220930130128.0 | ||
024 | 7 | _ | |a 10.1021/acsami.7b02921 |2 doi |
024 | 7 | _ | |a 1944-8244 |2 ISSN |
024 | 7 | _ | |a 1944-8252 |2 ISSN |
024 | 7 | _ | |a pmid:28508634 |2 pmid |
024 | 7 | _ | |a WOS:000403136400097 |2 WOS |
037 | _ | _ | |a FZJ-2017-05819 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Cho, Deok-Jong |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Interfacial Metal–Oxide Interactions in Resistive Switching Memories |
260 | _ | _ | |a Washington, DC |c 2017 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1547474625_20255 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Metal oxides are commonly used as electrolytes for redox-based resistive switching memories. In most cases, non-noble metals are directly deposited as ohmic electrodes. We demonstrate that irrespective of bulk thermodynamics predictions an intermediate oxide film a few nanometers in thickness is always formed at the metal/insulator interface, and this layer significantly contributes to the development of reliable switching characteristics. We have tested metal electrodes and metal oxides mostly used for memristive devices, that is, Ta, Hf, and Ti and Ta2O5, HfO2, and SiO2. Intermediate oxide layers are always formed at the interfaces, whereas only the rate of the electrode oxidation depends on the oxygen affinity of the metal and the chemical stability of the oxide matrix. Device failure is associated with complete transition of short-range order to a more disordered main matrix structure. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Lübben, Michael |0 P:(DE-Juel1)162283 |b 1 |
700 | 1 | _ | |a Wiefels, Stefan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Lee, Kug-Seung |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Valov, Ilia |0 P:(DE-Juel1)131014 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1021/acsami.7b02921 |g Vol. 9, no. 22, p. 19287 - 19295 |0 PERI:(DE-600)2467494-1 |n 22 |p 19287 - 19295 |t ACS applied materials & interfaces |v 9 |y 2017 |x 1944-8252 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/836767/files/acsami.7b02921-valov.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:836767 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131014 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2015 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|