000836814 001__ 836814
000836814 005__ 20210129231107.0
000836814 0247_ $$2doi$$a10.1021/jacs.7b05576
000836814 0247_ $$2Handle$$a2128/15232
000836814 0247_ $$2WOS$$aWOS:000407089500046
000836814 0247_ $$2altmetric$$aaltmetric:21586213
000836814 0247_ $$2pmid$$apmid:28683550
000836814 037__ $$aFZJ-2017-05856
000836814 082__ $$a540
000836814 1001_ $$0P:(DE-HGF)0$$aKulkarni, Yashraj S.$$b0
000836814 245__ $$aEnzyme Architecture: Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase
000836814 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2017
000836814 3367_ $$2DRIVER$$aarticle
000836814 3367_ $$2DataCite$$aOutput Types/Journal article
000836814 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504272669_10286
000836814 3367_ $$2BibTeX$$aARTICLE
000836814 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000836814 3367_ $$00$$2EndNote$$aJournal Article
000836814 520__ $$aTriosephosphate isomerase (TIM) is a proficient catalyst of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde phosphate (GAP), via general base catalysis by E165. Historically, this enzyme has been an extremely important model system for understanding the fundamentals of biological catalysis. TIM is activated through an energetically demanding conformational change, which helps position the side chains of two key hydrophobic residues (I170 and L230), over the carboxylate side chain of E165. This is critical both for creating a hydrophobic pocket for the catalytic base and for maintaining correct active site architecture. Truncation of these residues to alanine causes significant falloffs in TIM’s catalytic activity, but experiments have failed to provide a full description of the action of this clamp in promoting substrate deprotonation. We perform here detailed empirical valence bond calculations of the TIM-catalyzed deprotonation of DHAP and GAP by both wild-type TIM and its I170A, L230A, and I170A/L230A mutants, obtaining exceptional quantitative agreement with experiment. Our calculations provide a linear free energy relationship, with slope 0.8, between the activation barriers and Gibbs free energies for these TIM-catalyzed reactions. We conclude that these clamping side chains minimize the Gibbs free energy for substrate deprotonation, and that the effects on reaction driving force are largely expressed at the transition state for proton transfer. Our combined analysis of previous experimental and current computational results allows us to provide an overview of the breakdown of ground-state and transition state effects in enzyme catalysis in unprecedented detail, providing a molecular description of the operation of a hydrophobic clamp in triosephosphate isomerase.
000836814 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000836814 7001_ $$0P:(DE-Juel1)170011$$aLiao, Qinghua$$b1
000836814 7001_ $$0P:(DE-Juel1)165744$$aPetrovic, Dusan$$b2$$ufzj
000836814 7001_ $$0P:(DE-HGF)0$$aKrüger, Dennis M.$$b3
000836814 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b4$$ufzj
000836814 7001_ $$0P:(DE-HGF)0$$aAmyes, Tina L.$$b5
000836814 7001_ $$0P:(DE-HGF)0$$aRichard, John P.$$b6$$eCorresponding author
000836814 7001_ $$0P:(DE-HGF)0$$aKamerlin, Shina C. L.$$b7$$eCorresponding author
000836814 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.7b05576$$n30$$p10514–10525$$tJournal of the American Chemical Society$$v139$$x0002-7863$$y2017
000836814 8564_ $$uhttps://juser.fz-juelich.de/record/836814/files/Enzyme%20Architecture-Modeling%20the%20Operation%20of%20a%20Hydrophobic%20Clamp%20in%20Catalysis%20by%20Triosephosphate%20Isomerase.pdf$$yOpenAccess
000836814 8564_ $$uhttps://juser.fz-juelich.de/record/836814/files/Enzyme%20Architecture-Modeling%20the%20Operation%20of%20a%20Hydrophobic%20Clamp%20in%20Catalysis%20by%20Triosephosphate%20Isomerase.gif?subformat=icon$$xicon$$yOpenAccess
000836814 8564_ $$uhttps://juser.fz-juelich.de/record/836814/files/Enzyme%20Architecture-Modeling%20the%20Operation%20of%20a%20Hydrophobic%20Clamp%20in%20Catalysis%20by%20Triosephosphate%20Isomerase.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000836814 8564_ $$uhttps://juser.fz-juelich.de/record/836814/files/Enzyme%20Architecture-Modeling%20the%20Operation%20of%20a%20Hydrophobic%20Clamp%20in%20Catalysis%20by%20Triosephosphate%20Isomerase.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000836814 8564_ $$uhttps://juser.fz-juelich.de/record/836814/files/Enzyme%20Architecture-Modeling%20the%20Operation%20of%20a%20Hydrophobic%20Clamp%20in%20Catalysis%20by%20Triosephosphate%20Isomerase.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000836814 8564_ $$uhttps://juser.fz-juelich.de/record/836814/files/Enzyme%20Architecture-Modeling%20the%20Operation%20of%20a%20Hydrophobic%20Clamp%20in%20Catalysis%20by%20Triosephosphate%20Isomerase.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000836814 909CO $$ooai:juser.fz-juelich.de:836814$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000836814 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165744$$aForschungszentrum Jülich$$b2$$kFZJ
000836814 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b4$$kFZJ
000836814 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000836814 9141_ $$y2017
000836814 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000836814 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000836814 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000836814 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000836814 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2015
000836814 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2015
000836814 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000836814 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000836814 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000836814 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000836814 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000836814 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000836814 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000836814 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000836814 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000836814 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000836814 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000836814 920__ $$lyes
000836814 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000836814 9801_ $$aFullTexts
000836814 980__ $$ajournal
000836814 980__ $$aVDB
000836814 980__ $$aUNRESTRICTED
000836814 980__ $$aI:(DE-Juel1)ICS-6-20110106
000836814 981__ $$aI:(DE-Juel1)IBI-7-20200312